What I Wish I Knew When Learning Haskell

Version 2.5

% What I Wish I Knew When Learning Haskell (Version 2.5) % Stephen Diehl % February 2020

Version

This is the fifth major draft of this document since 2009.

Pull requests are always accepted for changes and additional content. This is a living document. The only way this document will stay up to date is through the kindness of readers like you and community patches and pull requests on Github.

If you’d like a physical copy of the text you can either print it for yourself (see Printable PDF) or purchase one online:

Author

This text is authored by Stephen Diehl.

Special thanks for Erik Aker for copyediting assistance.

License

Copyright © 2009-2020 Stephen Diehl

This code included in the text is dedicated to the public domain. You can copy, modify, distribute and perform the code, even for commercial purposes, all without asking permission.

You may distribute this text in its full form freely, but may not reauthor or sublicense this work. Any reproductions of major portions of the text must include attribution.

The software is provided “as is”, without warranty of any kind, express or implied, including But not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, Arising from, out of or in connection with the software or the use or other dealings in the software.

Basics

What is Haskell?

At its heart Haskell is a lazy, functional, statically-typed programming language with advanced type system features such as higher-rank, higher-kinded parametric polymorphism, monadic effects, generalized algebraic data types, ad-hoc polymorphism through type classes, associated type families, and more. As a programming language, Haskell pushes the frontiers of programming language design more so than any other general purpose language while still remaining practical for everyday use.

Beyond language features, Haskell remains an organic, community-driven effort, run by its userbase instead of by corporate influences. While there are some Haskell companies and consultancies, most are fairly small and none have an outsized influence on the development of the language. This is in stark contrast to ecosystems like Java and Go where Oracle and Google dominate all development. In fact, the Haskell community is a synthesis between multiple disciplines of academic computer science and industrial users from large and small firms, all of whom contribute back to the language ecosystem.

Originally, Haskell was borne out of academic research. Designed as an ML dialect, it was initially inspired by an older language called Miranda. In the early 90s, a group of academics formed the GHC committee to pursue building a research vehicle for lazy programming languages as a replacement for Miranda. This was a particularly in-vogue research topic at the time and as a result the committee attracted various talented individuals who initiated the language and ultimately laid the foundation for modern Haskell.

Over the last 30 years Haskell has evolved into a mature ecosystem, with an equally mature compiler. Even so, the language is frequently reimagined by passionate contributors who may be furthering academic research goals or merely contributing out of personal interest. Although laziness was originally the major research goal, this has largely become a quirky artifact that most users of the language are generally uninterested in. In modern times the major themes of Haskell community are:

Although these are the major research goals, Haskell is still a fully general purpose language, and it has been applied in wildly diverse settings from garbage trucks to cryptanalysis for the defense sector and everything in-between. With a thriving ecosystem of industrial applications in web development, compiler design, machine learning, financial services, FPGA development, algorithmic trading, numerical computing, cryptography research, and cybersecurity, the language has a lot to offer to any field or software practitioner.

Haskell as an ecosystem is one that is purely organic, it takes decades to evolve, makes mistakes and is not driven by any one ideology or belief about the purpose of functional programming. This makes Haskell programming simultaneously frustrating and exciting; and therein lies the fun that has been the intellectual siren song that has drawn many talented programmers to dabble in this beautiful language at some point in their lives.

See:

How to Read

This is a guide for working software engineers who have an interest in Haskell but don’t know Haskell yet. I presume you know some basics about how your operating system works, the shell, and some fundamentals of other imperative programming languages. If you are a Python or Java software engineer with no Haskell experience, this is the executive summary of Haskell theory and practice for you. We’ll delve into a little theory as needed to explain concepts but no more than necessary. If you’re looking for a purely introductory tutorial, this probably isn’t the right start for you, however this can be read as a companion to other introductory texts.

There is no particular order to this guide, other than the first chapter which describes how to get set up with Haskell and use the foundational compiler and editor tooling. After that you are free to browse the chapters in any order. Most are divided into several sections which outline different concepts, language features or libraries. However, the general arc of this guide bends toward more complex topics in later chapters.

As there is no ordering after the first chapter I will refer to concepts globally without introducing them first. If something doesn’t make sense just skip it and move on. I strongly encourage you to play around with the source code modules for yourself. Haskell cannot be learned from an armchair; instead it can only be mastered by writing a ton of code for yourself. GHC may initially seem like a cruel instructor, but in time most people grow to see it as their friend.

GHC

GHC is the Glorious Glasgow Haskell Compiler. Originally written in 1989, GHC is now the de facto standard for Haskell compilers. A few other compilers have existed along the way, but they either are quite limited or have bit rotted over the years. At this point, GHC is a massive compiler and it supports a wide variety of extensions. It’s also the only reference implementation for the Haskell language and as such, it defines what Haskell the language is by its implementation.

GHC is run at the command line with the command ghc.

$ ghc --version
The Glorious Glasgow Haskell Compilation System, version 8.8.1
$ ghc Example.hs -o example
$ ghc --make Example.hs

GHC’s runtime is written in C and uses machinery from GCC infrastructure for its native code generator and can also use LLVM for its native code generation. GHC is supported on the following architectures:

GHC itself depends on the following Linux packages.

ghcup

There are two major packages that need to be installed to use Haskell:

GHC can be installed on Linux and Mac with ghcup by running the following command:

$ curl --proto '=https' --tlsv1.2 -sSf https://get-ghcup.haskell.org | sh

To start the interactive user interface, run:

$ ghcup tui

Alternatively, to use the cli to install multiple versions of GHC, use the install command.

$ ghcup install ghc 8.6.5
$ ghcup install ghc 8.4.4

To select which version of GHC is available on the PATH use the set command.

$ ghcup set ghc 8.8.1

This can also be used to install cabal.

$ ghcup install cabal

To modify your shell to include ghc and cabal.

$ source ~/.ghcup/env

Or you can permanently add the following to your .bashrc or .zshrc file:

export PATH="~/.ghcup/bin:$PATH"

Package Managers

There are two major Haskell packaging tools: Cabal and Stack. Both take differing views on versioning schemes but can more or less interoperate at the package level. So, why are there two different package managers?

The simplest explanation is that Haskell is an organic ecosystem with no central authority, and as such different groups of people with different ideas and different economic interests about optimal packaging built their own solutions around two different models. The interests of an organic community don’t always result in open source convergence; however, the ecosystem has seen both package managers reach much greater levels of stability as a result of collaboration. In this article, I won’t offer a preference for which system to use: it is left up to the reader to experiment and use the system which best suits your or your company’s needs.

Project Structure

A typical Haskell project hosted on Github or Gitlab will have several executable, test and library components across several subdirectories. Each of these files will correspond to an entry in the Cabal file.

.
├── app                          # Executable entry-point
│   └── Main.hs                  # main-is file
├── src                          # Library entry-point
│   └── Lib.hs                   # Exposed module
├── test                         # Test entry-point
│   └── Spec.hs                  # Main-is file
├── ChangeLog.md                 # extra-source-files
├── LICENSE                      # extra-source-files
├── README.md                    # extra-source-files
├── package.yaml                 # hpack configuration
├── Setup.hs
├── simple.cabal                 # cabal configuration generated from hpack
├── stack.yaml                   # stack configuration
├── .hlint.yaml                  # hlint configuration
└── .ghci                        # ghci configuration

More complex projects consisting of multiple modules will include multiple project directories like those above, but these will be nested in subfolders with a cabal.project or stack.yaml in the root of the repository.

.
├── lib-one             # component1
├── lib-two             # component2
├── lib-three           # component3
├── stack.yaml          # stack project configuration
└── cabal.project       # cabal project configuration

An example Cabal project file, named cabal.project above, this multi-component library repository would include these lines.

packages: ./lib-one
          ./lib-two
          ./lib-three

By contrast, an example Stack project stack.yaml for the above multi-component library repository would be:

resolver: lts-14.20
packages:
- 'lib-one'
- 'lib-two'
- 'lib-three'

extra-package-dbs: []

Cabal

Cabal is the build system for Haskell. Cabal is also the standard build tool for Haskell source supported by GHC. Cabal can be used simultaneously with Stack or standalone with cabal new-build.

To update the package index from Hackage, run:

$ cabal update

To start a new Haskell project, run:

$ cabal init
$ cabal configure

This will result in a .cabal file being created with the configuration options for our new project.

Cabal can also build dependencies in parallel by passing -j<n> where n is the number of concurrent builds.

$ cabal install -j4 --only-dependencies

Let’s look at an example .cabal file. There are two main entry points that any package may provide: a library and an executable. Multiple executables can be defined, but only one library. In addition, there is a special form of executable entry point Test-Suite, which defines an interface for invoking unit tests from cabal.

For a library, the exposed-modules field in the .cabal file indicates which modules within the package structure will be publicly visible when the package is installed. These modules are the user-facing APIs that we wish to expose to downstream consumers.

For an executable, the main-is field indicates the module that exports the main function responsible for running the executable logic of the application. Every module in the package must be listed in one of other-modules, exposed-modules or main-is fields.

name:               mylibrary
version:            0.1
cabal-version:      >= 1.10
author:             Paul Atreides
license:            MIT
license-file:       LICENSE
synopsis:           My example library.
category:           Math
tested-with:        GHC
build-type:         Simple

library
    exposed-modules:
      Library.ExampleModule1
      Library.ExampleModule2

    build-depends:
      base >= 4 && < 5

    default-language: Haskell2010

    ghc-options: -O2 -Wall -fwarn-tabs

executable "example"
    build-depends:
        base >= 4 && < 5,
        mylibrary == 0.1
    default-language: Haskell2010
    main-is: Main.hs

Test-Suite test
  type: exitcode-stdio-1.0
  main-is: Test.hs
  default-language: Haskell2010
  build-depends:
      base >= 4 && < 5,
      mylibrary == 0.1

To run an “executable” under cabal execute the command:

$ cabal run
$ cabal run <name> # when there are several executables in a project

To load the “library” into a GHCi shell under cabal execute the command:

$ cabal repl
$ cabal repl <name>

The <name> metavariable is either one of the executable or library declarations in the .cabal file and can optionally be disambiguated by the prefix exe:<name> or lib:<name> respectively.

To build the package locally into the ./dist/build folder, execute the build command:

$ cabal build

To run the tests, our package must itself be reconfigured with the --enable-tests flag and the build-depends options. The Test-Suite must be installed manually, if not already present.

$ cabal install --only-dependencies --enable-tests
$ cabal configure --enable-tests
$ cabal test
$ cabal test <name>

Moreover, arbitrary shell commands can be invoked with the GHC environmental variables. It is quite common to run a new bash shell with this command such that the ghc and ghci commands use the package environment. This can also run any system executable with the GHC_PACKAGE_PATH variable set to the libraries package database.

$ cabal exec
$ cabal exec bash

The haddock documentation can be generated for the local project by executing the haddock command. The documentation will be built to the ./dist folder.

$ cabal haddock

When we’re finally ready to upload to Hackage ( presuming we have a Hackage account set up ), then we can build the tarball and upload with the following commands:

$ cabal sdist
$ cabal upload dist/mylibrary-0.1.tar.gz

The current state of a local build can be frozen with all current package constraints enumerated:

$ cabal freeze

This will create a file cabal.config with the constraint set.

constraints: mtl ==2.2.1,
             text ==1.1.1.3,
             transformers ==0.4.1.0

The cabal configuration is stored in $HOME/.cabal/config and contains various options including credential information for Hackage upload.

A library can also be compiled with runtime profiling information enabled. More on this is discussed in the section on Concurrency and Profiling.

library-profiling: True

Another common flag to enable is documentation which forces the local build of Haddock documentation, which can be useful for offline reference. On a Linux filesystem these are built to the /usr/share/doc/ghc-doc/html/libraries/ directory.

documentation: True

Cabal can also be used to install packages globally to the system PATH. For example the parsec package to your system from Hackage, the upstream source of Haskell packages, invoke the install command:

$ cabal install parsec --installdir=~/.local/bin  # latest version

To download the source for a package, we can use the get command to retrieve the source from Hackage.

$ cabal get parsec    # fetch source
$ cd parsec-3.1.5

$ cabal configure
$ cabal build
$ cabal install

Cabal New-Build

The interface for Cabal has seen an overhaul in the last few years and has moved more closely towards the Nix-style of local builds. Under the new system packages are separated into categories:

As of Cabal 3.0 the new-build commands are the default operations for build operations. So if you type cabal build using Cabal 3.0 you are already using the new-build system.

Historically these commands were separated into two different command namespaces with prefixes v1- and v2-, with v1 indicating the old sandbox build system and the v2 indicating the new-build system.

The new build commands are listed below:

new-build          Compile targets within the project.
new-configure      Add extra project configuration
new-repl           Open an interactive session for the given component.
new-run            Run an executable.
new-test           Run test-suites
new-bench          Run benchmarks
new-freeze         Freeze dependencies.
new-haddock        Build Haddock documentation
new-exec           Give a command access to the store.
new-update         Updates list of known packages.
new-install        Install packages.
new-clean          Clean the package store and remove temporary files.
new-sdist          Generate a source distribution file (.tar.gz).

Cabal also stores all of its build artifacts inside of a dist-newstyle folder stored in the project working directory. The compilation artifacts are of several categories.

These all get stored under the dist-newstyle folder structure which is set up hierarchically under the specific CPU architecture, GHC compiler version and finally the package version.

dist-newstyle
├── build
│   └── x86_64-linux
│       └── ghc-8.6.5
│           └── mypackage-0.1.0
│               ├── build
│               │   ├── autogen
│               │   │   ├── cabal_macros.h
│               │   │   └── Paths_mypackage.hs
│               │   ├── libHSmypackage-0.1.0-inplace.a
│               │   ├── libHSmypackage-0.1.0-inplace-ghc8.6.5.so
│               │   ├── MyPackage
│               │   │   ├── Example.dyn_hi
│               │   │   ├── Example.dyn_o
│               │   │   ├── Example.hi
│               │   │   ├── Example.o
│               │   ├── MyPackage.dyn_hi
│               │   ├── MyPackage.dyn_o
│               │   ├── MyPackage.hi
│               │   └── MyPackage.o
│               ├── cache
│               │   ├── build
│               │   ├── config
│               │   └── registration
│               ├── package.conf.inplace
│               │   ├── package.cache
│               │   └── package.cache.lock
│               └── setup-config
├── cache
│   ├── compiler
│   ├── config
│   ├── elaborated-plan
│   ├── improved-plan
│   ├── plan.json
│   ├── solver-plan
│   ├── source-hashes
│   └── up-to-date
├── packagedb
│   └── ghc-8.6.5
│       ├── package.cache
│       ├── package.cache.lock
│       └── mypackage-0.1.0-inplace.conf
└── tmp

Local Packages

Both Stack and Cabal can handle local packages built from the local filesystem, from remote tarballs, or from remote Git repositories.

Inside of the stack.yaml simply specify the git repository remote and the hash to pull.

resolver: lts-14.20
packages:
  # From Git
  - git: https://github.com/sdiehl/protolude.git
    commit: f5c2bf64b147716472b039d30652846069f2fc70

In Cabal to add a remote create a cabal.project file and add your remote in the source-repository-package section.

packages: .

source-repository-package
    type: git
    location: https://github.com/hvr/HsYAML.git
    tag: e70cf0c171c9a586b62b3f75d72f1591e4e6aaa1

Version Bounds

All Haskell packages are versioned and the numerical quantities in the version are supposed to follow the Package Versioning Policy.

As packages evolve over time there are three numbers which monotonically increase depending on what has changed in the package.

-- PVP summary:      +-+------- breaking API changes
--                   | | +----- non-breaking API additions
--                   | | | +--- code changes with no API change
version:             0.1.0.0

Every library’s cabal file will have a packages dependencies section which will specify the external packages which the library depends on. It will also contain the allowed versions that it is known to build against in the build-depends section. The convention is to put the upper bound to the next major unreleased version and the lower bound at the currently used version.

build-depends:       
  base                >= 4.6  && <4.14,
  async               >= 2.0  && <2.3,
  deepseq             >= 1.3  && <1.5,
  containers          >= 0.5  && <0.7,
  hashable            >= 1.2  && <1.4,
  transformers        >= 0.2  && <0.6,
  text                >= 1.2  && <1.3,
  bytestring          >= 0.10 && <0.11,
  mtl                 >= 2.1  && <2.3

Individual lines in the version specification can be dependent on other variables in the cabal file.

if !impl(ghc >= 8.0)
  Build-Depends: fail >= 4.9 && <4.10

Version bounds in cabal files can be managed automatically with a tool cabal-bounds which can automatically generate, update and format cabal files.

$ cabal-bounds update

See:

Stack

Stack is an alternative approach to Haskell’s package structure that emerged in 2015. Instead of using a rolling build like Cabal, Stack breaks up sets of packages into release blocks that guarantee internal compatibility between sets of packages. The package solver for Stack uses a different strategy for resolving dependencies than cabal-install has historically used and Stack combines this with a centralised build server called Stackage which continuously tests the set of packages in a resolver to ensure they build against each other.

Install

To install stack on Linux or Mac, run:

curl -sSL https://get.haskellstack.org/ | sh

For other operating systems, see the official install directions.

Usage

Once stack is installed, it is possible to setup a build environment on top of your existing project’s cabal file by running:

stack init

An example stack.yaml file for GHC 8.8.1 would look like this:

resolver: lts-14.20
flags: {}
extra-package-dbs: []
packages: []
extra-deps: []

Most of the common libraries used in everyday development are already in the Stackage repository. The extra-deps field can be used to add Hackage dependencies that are not in the Stackage repository. They are specified by the package and the version key. For instance, the zenc package could be added to stack build in the following way:

extra-deps:
- zenc-0.1.1

The stack command can be used to install packages and executables into either the current build environment or the global environment. For example, the following command installs the executable for hlint, a popular linting tool for Haskell, and places it in the PATH:

$ stack install hlint

To check the set of dependencies, run:

$ stack ls dependencies

Just as with cabal, the build and debug process can be orchestrated using stack commands:

$ stack build                 # Build a cabal target
$ stack repl                  # Launch ghci
$ stack ghc                   # Invoke the standalone compiler in stack environment
$ stack exec bash             # Execute a shell command with the stack GHC environment variables
$ stack build --file-watch    # Build on every filesystem change

To visualize the dependency graph, use the dot command piped first into graphviz, then piped again into your favorite image viewer:

$ stack dot --external | dot -Tpng | feh -

Hpack

Hpack is an alternative package description language that uses a structured YAML format to generate Cabal files. Hpack succeeds in DRYing (Don’t Repeat Yourself) several sections of cabal files that are often quite repetitive across large projects. Hpack uses a package.yaml file which is consumed by the command line tool hpack. Hpack can be integrated into Stack and will generate resulting cabal files whenever stack build is invoked on a project using a package.yaml file. The output cabal file contains a hash of the input yaml file for consistency checking.

A small package.yaml file might look something like the following:

name        : example
version     : 0.1.0
synopsis    : My fabulous library
description : My fabulous library
maintainer  : John Doe
github      : john/example
category    : Development

ghc-options: -Wall

dependencies:
  - base >= 4.9 && < 5
  - protolude
  - deepseq
  - directory
  - filepath
  - text
  - containers
  - unordered-containers
  - aeson
  - pretty-simple

library:
  source-dirs: src
  exposed-modules:
    - Example

executable:
  main: Main.hs
  source-dirs: exe
  dependencies:
    - example

tests:
  spec:
    main: Test.hs
    source-dirs:
      - test
      - src
    dependencies:
      - example
      - tasty
      - tasty-hunit

Base

GHC itself ships with a variety of core libraries that are loaded into all Haskell projects. The most foundational of these is base which forms the foundation for all Haskell code. The base library is split across several modules.

There have been several large changes to Base over the years which have resulted in breaking changes that means older versions of base are not compatible with newer versions.

Prelude

The Prelude is the default standard module. The Prelude is imported by default into all Haskell modules unless either there is an explicit import statement for it, or the NoImplicitPrelude extension is enabled.

The Prelude exports several hundred symbols that are the default datatypes and functions for libraries that use the GHC-issued prelude. Although the Prelude is the default import, many libraries these days do not use the standard prelude instead choosing to roll a custom one on a per-project basis or to use an off-the shelf prelude from Hackage.

The Prelude contains common datatype and classes such as List, Monad, Maybe and most associated functions for manipulating these structures. These are the most foundational programming constructs in Haskell.

Modern Haskell

There are two official language standards:

And then there is what is colloquially referred to as Modern Haskell which is not an official language standard, but an ambiguous term to denote the emerging way most Haskellers program with new versions of GHC. The language features typically included in modern Haskell are not well-defined and will vary between programmers. For instance, some programmers prefer to stay quite close to the Haskell2010 standard and only include a few extensions while some go all out and attempt to do full dependent types in Haskell.

By contrast, the type of programming described by the phrase Modern Haskell typically utilizes some type-level programming, as well as flexible typeclasses, and a handful of Language Extensions.

Flags

GHC has a wide variety of flags that can be passed to configure different behavior in the compiler. Enabling GHC compiler flags grants the user more control in detecting common code errors. The most frequently used flags are:

Flag Description
-fwarn-tabs Emit warnings of tabs instead of spaces in the source code
-fwarn-unused-imports Warn about libraries imported without being used
-fwarn-name-shadowing Warn on duplicate names in nested bindings
-fwarn-incomplete-uni-patterns Emit warnings for incomplete patterns in lambdas or pattern bindings
-fwarn-incomplete-patterns Warn on non-exhaustive patterns
-fwarn-overlapping-patterns Warn on pattern matching branches that overlap
-fwarn-incomplete-record-updates Warn when records are not instantiated with all fields
-fdefer-type-errors Turn type errors into warnings
-fwarn-missing-signatures Warn about toplevel missing type signatures
-fwarn-monomorphism-restriction Warn when the monomorphism restriction is applied implicitly
-fwarn-orphans Warn on orphan typeclass instances
-fforce-recomp Force recompilation regardless of timestamp
-fno-code Omit code generation, just parse and typecheck
-fobject-code Generate object code

Like most compilers, GHC takes the -Wall flag to enable all warnings. However, a few of the enabled warnings are highly verbose. For example, -fwarn-unused-do-bind and -fwarn-unused-matches typically would not correspond to errors or failures.

Any of these flags can be added to the ghc-options section of a project’s .cabal file. For example:

  ghc-options:
    -fwarn-tabs
    -fwarn-unused-imports
    -fwarn-missing-signatures
    -fwarn-name-shadowing
    -fwarn-incomplete-patterns

The flags described above are simply the most useful. See the official reference for the complete set of GHC’s supported flags.

For information on debugging GHC internals, see the commentary on GHC internals.

Hackage

Hackage is the upstream source of open source Haskell packages. With Haskell’s continuing evolution, Hackage has become many things to developers, but there seem to be two dominant philosophies of uploaded libraries.

A Repository for Production Libraries

In the first philosophy, libraries exist as reliable, community-supported building blocks for constructing higher level functionality on top of a common, stable edifice. In development communities where this method is the dominant philosophy, the authors of libraries have written them as a means of packaging up their understanding of a problem domain so that others can build on their understanding and expertise.

An Experimental Playground

In contrast to the previous method of packaging, a common philosophy in the Haskell community is that Hackage is a place to upload experimental libraries as a means of getting community feedback and making the code publicly available. Library authors often rationalize putting these kinds of libraries up without documentation, often without indication of what the library actually does or how it works. This unfortunately means a lot of Hackage namespace has become polluted with dead-end, bit-rotting code. Sometimes packages are also uploaded purely for internal use within an organisation, or to accompany an academic paper. These packages are often left undocumented as well.

For developers coming to Haskell from other language ecosystems that favor the former philosophy (e.g., Python, JavaScript, Ruby), seeing thousands of libraries without the slightest hint of documentation or description of purpose can be unnerving. It is an open question whether the current cultural state of Hackage is sustainable in light of these philosophical differences.

Needless to say, there is a lot of very low-quality Haskell code and documentation out there today, so being conservative in library assessment is a necessary skill. That said, there are also quite a few phenomenal libraries on Hackage that are highly curated by many people.

As a general rule, if the Haddock documentation for the library does not have a minimal working example, it is usually safe to assume that it is an RFC-style library and probably should be avoided for production code.

There are several heuristics you can use to answer the question Should I Use this Hackage Library:

An example of a bitrotted package:

https://hackage.haskell.org/package/numeric-quest

An example of a well maintained package:

https://hackage.haskell.org/package/QuickCheck

Stackage

Stackage is an alternative opt-in packaging repository which mirrors a subset of Hackage. Packages that are included in Stackage are built in a massive continuous integration process that checks to see that given versions link successfully against each other. This can give a higher degree of assurance that the bounds of a given resolver ensure compatibility.

Stackage releases are built nightly and there are also long-term stable (LTS) releases. Nightly resolvers have a date convention while LTS releases have a major and minor version. For example:

See:

GHCi

GHCi is the interactive shell for the GHC compiler. GHCi is where we will spend most of our time in everyday development. Following is a table of useful GHCi commands.

Command Shortcut Action
:reload :r Code reload
:type :t Type inspection
:kind :k Kind inspection
:info :i Information
:print :p Print the expression
:edit :e Load file in system editor
:load :l Set the active Main module in the REPL
:module :m Add modules to imports
:add :ad Load a file into the REPL namespace
:instances :in Show instances of a typeclass
:browse :bro Browse all available symbols in the REPL namespace

The introspection commands are an essential part of debugging and interacting with Haskell code:

λ: :type 3
3 :: Num a => a
λ: :kind Either
Either :: * -> * -> *
λ: :info Functor
class Functor f where
  fmap :: (a -> b) -> f a -> f b
  (<$) :: a -> f b -> f a
        -- Defined in `GHC.Base'
  ...
λ: :i (:)
data [] a = ... | a : [a]       -- Defined in `GHC.Types'
infixr 5 :

Querying the current state of the global environment in the shell is also possible. For example, to view module-level bindings and types in GHCi, run:

λ: :browse
λ: :show bindings

To examine module-level imports, execute:

λ: :show imports
import Prelude -- implicit
import Data.Eq
import Control.Monad

Language extensions can be set at the repl.

:set -XNoImplicitPrelude
:set -XFlexibleContexts
:set -XFlexibleInstances
:set -XOverloadedStrings

To see compiler-level flags and pragmas, use:

λ: :set
options currently set: none.
base language is: Haskell2010
with the following modifiers:
  -XNoDatatypeContexts
  -XNondecreasingIndentation
GHCi-specific dynamic flag settings:
other dynamic, non-language, flag settings:
  -fimplicit-import-qualified
warning settings:

λ: :showi language
base language is: Haskell2010
with the following modifiers:
  -XNoDatatypeContexts
  -XNondecreasingIndentation
  -XExtendedDefaultRules

Language extensions and compiler pragmas can be set at the prompt. See the Flag Reference for the vast collection of compiler flag options.

Several commands for the interactive shell have shortcuts:

Function
+t Show types of evaluated expressions
+s Show timing and memory usage
+m Enable multi-line expression delimited by :{ and :}.
λ: :set +t
λ: []
[]
it :: [a]
λ: :set +s
λ: foldr (+) 0 [1..25]
325
it :: Prelude.Integer
(0.02 secs, 4900952 bytes)
λ: :set +m
λ: :{
λ:| let foo = do
λ:|           putStrLn "hello ghci"
λ:| :}
λ: foo
"hello ghci"

.ghci.conf

The GHCi shell can be customized globally by defining a configure file ghci.conf in $HOME/.ghc/ or in the current working directory as ./.ghci.conf.

For example, we can add a command to use the Hoogle type search from within GHCi. First, install hoogle:

 # run one of these command
$ cabal install hoogle
$ stack install hoogle

Then, we can enable the search functionality by adding a command to our ghci.conf:

:set prompt "λ: "

:def hlint const . return $ ":! hlint \"src\""
:def hoogle \s -> return $ ":! hoogle --count=15 \"" ++ s ++ "\""
λ: :hoogle (a -> b) -> f a -> f b
Data.Traversable fmapDefault :: Traversable t => (a -> b) -> t a -> t b
Prelude fmap :: Functor f => (a -> b) -> f a -> f b

It is common community tradition to set the prompt to a colored λ:

:set prompt "\ESC[38;5;208m\STXλ>\ESC[m\STX "

GHC can also be coerced into giving slightly better error messages:

-- Better errors
:set -ferror-spans -freverse-errors -fprint-expanded-synonyms

GHCi can also use a pretty printing library to format all output, which is often much easier to read. For example if your project is already using the amazing pretty-simple library simply include the following line in your ghci configuration.

:set -ignore-package pretty-simple -package pretty-simple
:def! pretty \ _ -> pure ":set -interactive-print Text.Pretty.Simple.pPrint"
:pretty

And the default prelude can also be disabled and swapped for something more sensible:

:seti -XNoImplicitPrelude
:seti -XFlexibleContexts
:seti -XFlexibleInstances
:seti -XOverloadedStrings
import Protolude -- or any other preferred prelude

GHCi Performance

For large projects, GHCi with the default flags can use quite a bit of memory and take a long time to compile. To speed compilation by keeping artifacts for compiled modules around, we can enable object code compilation instead of bytecode.

:set -fobject-code

Enabling object code compilation may complicate type inference, since type information provided to the shell can sometimes be less informative than source-loaded code. This underspecificity can result in breakage with some language extensions. In that case, you can temporarily reenable bytecode compilation on a per module basis with the -fbyte-code flag.

:set -fbyte-code
:load MyModule.hs

If all you need is to typecheck your code in the interactive shell, then disabling code generation entirely makes reloading code almost instantaneous:

:set -fno-code

Editor Integration

Haskell has a variety of editor tools that can be used to provide interactive development feedback and functionality such as querying types of subexpressions, linting, type checking, and code completion. These are largely provided by the haskell-ide-engine which serves as an editor agnostic backend that interfaces with GHC and Cabal to query code.

Vim

Emacs

VSCode

Linux Packages

There are several upstream packages for Linux packages which are released by GHC development. The key ones of note for Linux are:

For scripts and operations tools, it is common to include commands to add the following apt repositories, and then use these to install the signed GHC and cabal-install binaries (if using Cabal as the primary build system).

$ sudo add-apt-repository -y ppa:hvr/ghc
$ sudo apt-get update
$ sudo apt-get install -y cabal-install-3.0 ghc-8.8.1

It is not advisable to use a Linux system package manager to manage Haskell dependencies. Although this can be done, in practice it is better to use Cabal or Stack to create locally isolated builds to avoid incompatibilities.

Names

Names in Haskell exist within a specific namespace. Names are either unqualified of the form:

nub

Or qualified by the module where they come from, such as:

Data.List.nub

The major namespaces are described below with their naming conventions

Namespace Convention
Modules Uppercase
Functions Lowercase
Variables Lowercase
Type Variables Lowercase
Datatypes Uppercase
Constructors Uppercase
Typeclasses Uppercase
Synonyms Uppercase
Type Families Uppercase

Modules

A module consists of a set of imports and exports and when compiled generates an interface which is linked against other Haskell modules. A module may reexport symbols from other modules.

-- A module starts with its export declarations of symbols declared in this file.
module MyModule (myExport1, myExport2) where

-- Followed by a set of imports of symbols from other files
import OtherModule (myImport1, myImport2)

-- Rest of the logic and definitions in the module follow
-- ...

Modules’ dependency graphs optionally may be cyclic (i.e. they import symbols from each other) through the use of a boot file, but this is often best avoided if at all possible.

Various module import strategies exist. For instance, we may:

Import all symbols into the local namespace.

import Data.List

Import select symbols into the local namespace:

import Data.List (nub, sort)

Import into the global namespace masking a symbol:

import Data.List hiding (nub)

Import symbols qualified under Data.Map namespace into the local namespace.

import qualified Data.Map

Import symbols qualified and reassigned to a custom namespace (M, in the example below):

import qualified Data.Map as M

You may also dump multiple modules into the same namespace so long as the symbols do not clash:

import qualified Data.Map as M
import qualified Data.Map.Strict as M

A main module is a special module which reserves the name Main and has a mandatory export of type IO () which is invoked when the executable is run.. This is the entry point from the system into a Haskell program.

module Main where
main = print "Hello World!"

Functions

Functions are the central construction in Haskell. A function f of two arguments x and y can be defined in a single line as the left-hand and right-hand side of an equation:

f x y = x + y

This line defines a function named f of two arguments, which on the right-hand side adds and yields the result. Central to the idea of functional programming is that computational functions should behave like mathematical functions. For instance, consider this mathematical definition of the above Haskell function, which, aside from the parentheses, looks the same:

f(x,y) = x + y

In Haskell, a function of two arguments need not necessarily be applied to two arguments. The result of applying only the first argument is to yield another function to which later the second argument can be applied. For example, we can define an add function and subsequently a single-argument inc function, by merely pre-applying 1 to add:

add x y = x + y
inc = add 1
λ: inc 4
5

In addition to named functions Haskell also has anonymous lambda functions denoted with a backslash. For example the identity function:

id x = x

Is identical to:

id = \x -> x

Functions may call themselves or other functions as arguments; a feature known as higher-order functions. For example the following function applies a given argument f, which is itself a function, to a value x twice.

applyTwice f x = f (f x)

Types

Typed functional programming is essential to the modern Haskell paradigm. But what are types precisely?

The syntax of a programming language is described by the constructs that define its types, and its semantics are described by the interactions among those constructs. A type system overlays additional structure on top of the syntax that imposes constraints on the formation of expressions based on the context in which they occur.

Dynamic programming languages associate types with values at evaluation, whereas statically typed languages associate types to expressions before evaluation. Dynamic languages are in a sense as statically typed as static languages, however they have a degenerate type system with only one type.

The dominant philosophy in functional programming is to “make invalid states unrepresentable” at compile-time, rather than performing massive amounts of runtime checks. To this end Haskell has developed a rich type system that is based on typed lambda calculus known as Girard’s System-F (See Rank-N Types) and has incrementally added extensions to support more type-level programming over the years.

The following ground types are quite common:

Parameterised types consist of a type and several type parameters indicated as lower case type variables. These are associated with common data structures such as lists and tuples.

The type system grows quite a bit from here, but these are the foundational types you’ll first encounter. See the later chapters for all types off advanced features that can be optionally turned on.

This tutorial will only cover a small amount of the theory of type systems. For a more thorough treatment of the subject there are two canonical texts:

Type Signatures

A toplevel Haskell function consists of two lines. The value-level definition which is a function name, followed by its arguments on the left-hand side of the equals sign, and then the function body which computes the value it yields on the right-hand side:

myFunction x y = x ^ 2 + y ^ 2
--   ^     ^ ^   ^^^^^^^^^^^^^
--   |     | |   |
--   |     | |   +-- function body
--   |     | +------ second argument
--   |     +-------- first argument 
--   +-------------- function

The type-level definition is the function name followed by the type of its arguments separated by arrows, and the final term is the type of the entire function body, meaning the type of value yielded by the function itself.

myFunction :: Int -> Int -> Int
--   ^          ^     ^    ^^^^^
--   |          |     |    |
--   |          |     |    +- return type
--   |          |     +------ second argument
--   |          +------------ first argument 
--   +----------------------- function

Here is a simple example of a function which adds two integers.

add :: Integer -> Integer -> Integer
add x y = x + y

Functions are also capable of invoking other functions inside of their function bodies:

inc :: Integer -> Integer
inc = add 1

The simplest function, called the identity function, is a function which takes a single value and simply returns it back. This is an example of a polymorphic function since it can handle values of any type. The identity function works just as well over strings as over integers.

id :: a -> a
id x = x

This can alternatively be written in terms of an anonymous lambda function which is a backslash followed by a space-separated list of arguments, followed by a function body.

id :: a -> a
id = \x -> x

One of the big ideas in functional programming is that functions are themselves first class values which can be passed to other functions as arguments themselves. For example the applyTwice function takes an argument f which is of type (a -> a) and it applies that function over a given value x twice and yields the result. applyTwice is a higher-order function which will transform one function into another function.

applyTwice :: (a -> a) -> a -> a
applyTwice f x = f (f x)

Often to the left of a type signature you will see a big arrow => which denotes a set of constraints over the type signature. Each of these constraints will be in uppercase and will normally mention at least one of the type variables on the right hand side of the arrow. These constraints can mean many things but in the simplest form they denote that a type variable must have an implementation of a type class. The add function below operates over any two similar values x and y, but these values must have a numerical interface for adding them together.

add :: (Num a) => a -> a -> a
add x y = x + y

Type signatures can also appear at the value level in the form of explicit type signatures which are denoted in parentheses.

add1 :: Int -> Int
add1 x = x + (1 :: Int)

These are sometimes needed to provide additional hints to the typechecker when specific terms are ambiguous to the typechecker, or when additional language extensions have been enabled which don’t have precise inference methods for deducing all type variables.

Currying

In other languages functions normally have an arity which prescribes the number of arguments a function can take. Some languages have fixed arity (like Fortran) others have flexible arity (like Python) where a variable of number of arguments can be passed. Haskell follows a very simple rule: all functions in Haskell take a single argument. For multi-argument functions (some of which we’ve already seen), arguments will be individually applied until the function is saturated and the function body is evaluated.

For example, the add function from above can be partially applied to produce an add1 function:

add :: Int -> Int -> Int
add x y = x + y

add1 :: Int -> Int
add1 = add 1

Uncurrying is the process of taking a function which takes two arguments and transforming it into a function which takes a tuple of arguments. The Haskell prelude includes both a curry and an uncurry function for transforming functions into those that take multiple arguments from those that take a tuple of arguments and vice versa:

curry :: ((a, b) -> c) -> a -> b -> c
uncurry :: (a -> b -> c) -> (a, b) -> c

For example, uncurry applied to the add function creates a function that takes a tuple of integers:

uncurryAdd :: (Int, Int) -> Int
uncurryAdd = uncurry add

example :: Int
example = uncurryAdd (1,2)

Algebraic Datatypes

Custom datatypes in Haskell are defined with the data keyword followed by the the type name, its parameters, and then a set of constructors. The possible constructors are either sum types or of product types. All datatypes in Haskell can be expressed as sums of products. A sum type is a set of options that is delimited by a pipe.

A datatype can only ever be inhabited by a single value from a sum type and intuitively models a set of “options” a value may take. While a product type is a combination of a set of typed values, potentially named by record fields. For example the following are two definitions of a Point product type, the latter with two fields x and y.

data Point = Point Int Int
data Point = Point { x :: Int, y :: Int }

As another example: A deck of common playing cards could be modeled by the following set of product and sum types:

data Suit = Clubs | Diamonds | Hearts | Spades
data Color = Red | Black
data Value 
  = Two
  | Three
  | Four
  | Five
  | Six
  | Seven
  | Eight
  | Nine
  | Ten 
  | Jack
  | Queen
  | King
  | Ace
  deriving (Eq, Ord)

A record type can use these custom datatypes to define all the parameters that define an individual playing card.

data Card = Card
  { suit  :: Suit
  , color :: Color
  , value :: Value
  }

Some example values:

queenDiamonds :: Card
queenDiamonds = Card Diamonds Red Queen

-- Alternatively 
queenDiamonds :: Card
queenDiamonds = Card { suit = Diamonds, color = Red, value = Queen }

The problem with the definition of this datatype is that it admits several values which are malformed. For instance it is possible to instantiate a Card with a suit Hearts but with color Black which is an invalid value. The convention for preventing these kind of values in Haskell is to limit the export of constructors in a module and only provide a limited set of functions which the module exports, which can enforce these constraints. These are smart constructors and an extremely common pattern in Haskell library design. For example we can export functions for building up specific suit cards that enforce the color invariant.

module Cards (Card, diamond, spade, heart, club) where

diamond :: Value -> Card
diamond = Card Diamonds Red

spade :: Value -> Card
spade = Card Spades Black

heart :: Value -> Card
heart = Card Hearts Red

club :: Value -> Card
club = Card Clubs Black

Datatypes may also be recursive, in the sense that they can contain themselves as fields. The most common example is a linked list which can be defined recursively as either an empty list or a value linked to a potentially nested version of itself.

data List a = Nil | List a (List a)

An example value would look like:

list :: List Integer
list = List 1 (List 2 (List 3 Nil))

Constructors for datatypes can also be defined as infix symbols. This is somewhat rare, but is sometimes used in more math heavy libraries. For example the constructor for our list type could be defined as the infix operator :+:. When the value is printed using a Show instance, the operator will be printed in infix form.

data List a = Nil | a :+: (List a)

Lists

Linked lists or cons lists are a fundamental data structure in functional programming. GHC has builtin syntactic sugar in the form of list syntax which allows us to write lists that expand into explicit invocations of the cons operator (:). The operator is right associative and an example is shown below:

[1,2,3] = 1 : 2 : 3 : []      
[1,2,3] = 1 : (2 : (3 : [])) -- with explicit parens

This syntax also extends to the typelevel where lists are represented as brackets around the type of values they contain.

myList1 :: [Int]
myList1 = [1,2,3]

myList2 :: [Bool]
myList2 = [True, True, False]

The cons operator itself has the type signature which takes a head element as its first argument and a tail argument as its second.

(:) :: a -> [a] -> [a]

The Data.Listmodule from the standard Prelude defines a variety of utility functions for operations over linked lists. For example the length function returns the integral length of the number of elements in the linked list.

length :: [a] -> Int

While the take function extracts a fixed number of elements from the list.

take :: Int -> [a] -> [a]

Both of these functions are pure and return a new list without modifying the underlying list passed as an argument.

Another function iterate is an example of a function which returns an infinite list. It takes as its first argument a function and then repeatedly applies that function to produce a new element of the linked list.

iterate :: (a -> a) -> a -> [a]

Consuming these infinite lists can be used as a control flow construct to construct loops. For example instead of writing an explicit loop, as we would in other programming languages, we instead construct a function which generates list elements. For example producing a list which produces subsequent powers of two:

powersOfTwo = iterate (2*) 1

We can then use the take function to evaluate this lazy stream to a desired depth.

λ: take 15 powersOfTwo
[1,2,4,8,16,32,64,128,256,512,1024,2048,4096,8192,16384]

An equivalent loop in an imperative language would look like the following.

def powersOfTwo(n):
    square_list = [1]
    for i in range(1,n+1):
        square_list.append(2 ** i)
    return square_list

print(powersOfTwo(15))

Pattern Matching

To unpack an algebraic datatype and extract its fields we’ll use a built in language construction known as pattern matching. This is denoted by the case syntax and scrutinizes a specific value. A case expression will then be followed by a sequence of matches which consist of a pattern on the left and an arbitrary expression on the right. The left patterns will all consist of constructors for the type of the scrutinized value and should enumerate all possible constructors. For product type patterns that are scrutinized a sequence of variables will bind the fields associated with its positional location in the constructor. The types of all expressions on the right hand side of the matches must be identical.

Pattern matches can be written in explicit case statements or in toplevel functional declarations. The latter simply expands the former in the desugaring phase of the compiler.

data Example = Example Int Int Int

example1 :: Example -> Int
example1 x = case x of 
  Example a b c -> a + b + c

example2 :: Example -> Int
example2 (Example a b c) = a + b +c

Following on the playing card example in the previous section, we could use a pattern to produce a function which scores the face value of a playing card.

value :: Value -> Integer
value card = case card of
  Two    -> 2
  Three  -> 3
  Four   -> 4
  Five   -> 5
  Six    -> 6
  Seven  -> 7
  Eight  -> 8
  Nine   -> 9
  Ten    -> 10
  Jack   -> 10
  Queen  -> 10
  King   -> 10
  Ace    -> 1

And we can use a double pattern match to produce a function which determines which suit trumps another suit. For example we can introduce an order of suits of cards where the ranking of cards proceeds (Clubs, Diamonds, Hearts, Spaces). A _ underscore used inside a pattern indicates a wildcard pattern and matches against any constructor given. This should be the last pattern used a in match list.

suitBeats :: Suit -> Suit -> Bool
suitBeats Clubs    Diamonds  = True
suitBeats Clubs    Hearts    = True
suitBeats Clubs    Spaces    = True
suitBeats Diamonds Hearts    = True
suitBeats Diamonds Spades    = True
suitBeats Hearts   Spades    = True
suitBeats _        _         = False

And finally we can write a function which determines if another card beats another card in terms of the two pattern matching functions above. The following pattern match brings the values of the record into the scope of the function body assigning to names specified in the pattern syntax.

beats :: Card -> Card -> Bool
beats (Card suit1 color1 value1) (Card suit2 color2 value2) = 
  (suitBeats suit1 suit2) && (value1 > value2)

Functions may also invoke themselves. This is known as recursion. This is quite common in pattern matching definitions which recursively tear down or build up data structures. This kind of pattern is one of the defining modes of programming functionally.

The following two recursive pattern matches are desugared forms of each other:

fib :: Integer -> Integer
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)
fib :: Integer -> Integer
fib m = case m of
  0 -> 0
  1 -> 1
  n -> fib (n-1) + fib(n-2)

Pattern matching on lists is also an extremely common pattern. It has special pattern syntax and the tail variable is typically pluralized. In the following x denotes the head variable and xs denotes the tail. For example the following function traverses a list of integers and adds (+1) to each value.

addOne :: [Int] -> [Int]
addOne (x : xs) = (x+1) : (addOne xs)
addOne [] = []

Guards

Guard statements are expressions that evaluate to boolean values that can be used to restrict pattern matches. These occur in a pattern match statements at the toplevel with the pipe syntax on the left indicating the guard condition. The special otherwise condition is just a renaming of the boolean value True exported from Prelude.

absolute :: Int -> Int
absolute n 
  | n < 0     = (-n)
  | otherwise = n

Guards can also occur in pattern case expressions.

absoluteJust :: Maybe Int -> Maybe Int
absoluteJust n = case n of
  Nothing -> Nothing
  Just n
    | n < 0     -> Just (-n)
    | otherwise -> Just n

Operators and Sections

An operator is a function that can be applied using infix syntax or partially applied using a section. Operators can be defined to use any combination of the special ASCII symbols or any unicode symbol.

! # % & * + . / < = > ? @ \ ^ | - ~ :

The following are reserved syntax and cannot be overloaded:

.. : :: = \ | <- -> @ ~ =>

Operators are of one of three fixity classes.

Expressions involving infix operators are disambiguated by the operator’s fixity and precedence. Infix operators are either left or right associative. Associativity determines how operators of the same precedence are grouped in the absence of parentheses.

a + b + c + d   =   ((a + b) + c) + d    -- left associative
a + b + c + d   =   a + (b + (c + d))    -- right associative

Precedence and associativity are denoted by fixity declarations for the operator using either infixr infixl and infix. The standard operators defined in the Prelude have the following precedence table.

infixr 9  .
infixr 8  ^, ^^, **
infixl 7  *, /, `quot`, `rem`, `div`, `mod`
infixl 6  +, -
infixr 5  ++
infix  4  ==, /=, <, <=, >=, >
infixr 3  &&
infixr 2  ||
infixr 1  >>, >>=
infixr 0  $, `seq`

Sections are written as ( op e ) or ( e op ). For example:

(+1) 3
(1+) 3

Operators written within enclosed parens are applied like traditional functions. For example the following are equivalent:

(+) x y   =   x + y

Tuples

Tuples are heterogeneous structures which contain a fixed number of values. Some simple examples are shown below:

-- 2-tuple
tuple2 :: (Integer, String)
tuple2 = (1, "foo")

-- 3-tuple
tuple3 :: (Integer, Integer, Integer)
tuple3 = (10, 20, 30)

For two-tuples there are two functions fst and snd which extract the left and right values respectively.

fst :: (a,b) -> a
snd :: (a,b) -> b

GHC supports tuples to size 62.

Where & Let Clauses

Haskell syntax contains two different types of declaration syntax: let and where. A let binding is an expression and binds anywhere in its body. For example the following let binding declares x and y in the expression x+y.

f = let x = 1; y = 2 in (x+y)

A where binding is a toplevel syntax construct (i.e. not an expression) that binds variables at the end of a function. For example the following binds x and y in the function body of f which is x+y.

f = x+y where x=1; y=1

Where clauses following the Haskell layout rule where definitions can be listed on newlines so long as the definitions have greater indentation than the first toplevel definition they are bound to.

f = x+y 
  where
    x = 1
    y = 1

Conditionals

Haskell has builtin syntax for scrutinizing boolean expressions. These are first class expressions known as if statements. An if statement is of the form if cond then trueCond else falseCond. Both the True and False statements must be present.

absolute :: Int -> Int
absolute n = 
  if (n < 0) 
    then (-n) 
    else n

If statements are just syntactic sugar for case expressions over boolean values. The following example is equivalent to the above example.

absolute :: Int -> Int
absolute n = case (n < 0) of 
  True  -> (-n)
  False -> n

Function Composition

Functions are obviously at the heart of functional programming. In mathematics function composition is an operation which takes two functions and produces another function with the result of the first argument function applied to the result of the second function. This is written in mathematical notation as:

g ∘ f

The two functions operate over a domain. For example X, Y and Z.

f : X → Y    g : Y → Z

Or in Haskell notation:

f :: X -> Y
g :: Y -> Z

Composition operation results in a new function:

g ∘ f : X → Z

In Haskell this operator is given special infix operator to appear similar to the mathematical notation. Intuitively it takes two functions of types b -> c and a -> b and composes them together to produce a new function. This is the canonical example of a higher-order function.

(.) :: (b -> c) -> (a -> b) -> a -> c
f . g = \x -> f (g x)

Haskell code will liberally use this operator to compose chains of functions. For example the following composes a chain of list processing functions sort, filter and map:

example :: [Integer] -> [Integer]
example =
    sort
  . filter (<100)
  . map (*10)

Another common higher-order function is the flip function which takes as its first argument a function of two arguments, and reverses the order of these two arguments returning a new function.

flip :: (a -> b -> c) -> b -> a -> c

The most common operator in all of Haskell is the function application operator $. This function is right associative and takes the entire expression on the right hand side of the operator and applies it to a function on the left.

infixr 0 $
($) :: (a -> b) -> a -> b 

This is quite often used in the pattern where the left hand side is a composition of other functions applied to a single argument. This is common in point-free style of programming which attempts to minimize the number of input arguments in favour of pure higher order function composition. The flipped form of this function does the opposite and is left associative, and applies the entire left hand side expression to a function given in the second argument to the function.

infixl 1 &
(&) :: a -> (a -> b) -> b 

For comparison consider the use of $, & and explicit parentheses.

ex1 = f1 . f2 . f3 . f4 $ input -- with ($)
ex1 = input & f1 . f2 . f3 . f4 -- with (&)
ex1 = (f1 . f2 . f3 . f4) input -- with explicit parens

The on function takes a function b and yields the result of applying unary function u to two arguments x and y. This is a higher order function that transforms two inputs and combines the outputs.

on :: (b -> b -> c) -> (a -> b) -> a -> a -> c 

This is used quite often in sort functions. For example we can write a custom sort function which sorts a list of lists based on length.

λ: import Data.List
λ: sortSize = sortBy (compare `on` length)
λ: sortSize [[1,2], [1,2,3], [1]]
[[1],[1,2],[1,2,3]]

List Comprehensions

List comprehensions are a syntactic construct that first originated in the Haskell language and has now spread to other programming languages. List comprehensions provide a simple way of working with lists and sequences of values that follow patterns. List comprehension syntax consists of three components:

The simplest generator is simply a list itself. The following example produces a list of integral values, each element multiplied by two.

λ: [2*x | x <- [1,2,3,4,5]]
--        ^^^^^^^^^^^^^^^^
--            Generator
[2,4,6,8,10]

We can extend this by adding a let statement which generalizes the multiplier on each step and binds it to a variable n.

λ: [n*x | x <- [1,2,3,4,5], let n = 3]
--                          ^^^^^^^^^
--                          Let binding
[3,6,9,12,15]

And we can also restrict the set of resulting values to only the subset of values of x that meet a condition. In this case we restrict to only values of x which are odd.

λ: [n*x | x <- [1,2,3,4,5], let n = 3, odd x]
--                                     ^^^^^
--                                     Guard
[3,9,15]

Comprehensions with multiple generators will combine each generator pairwise to produce the cartesian product of all results.

λ: [(x,y) | x <- [1,2,3], y <- [10,20,30]]
[(1,10),(1,20),(1,30),(2,10),(2,20),(2,30),(3,10),(3,20),(3,30)]

λ: [(x,y,z) | x <- [1,2], y <- [10,20], z <- [100,200]]
[(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

Haskell has builtin comprehension syntax which is syntactic sugar for specific methods of the Enum typeclass.

Syntax Sugar Enum Class Method
[ e1.. ] enumFrom e1
[ e1,e2.. ] enumFromThen e1 e2
[ e1..e3 ] enumFromTo e1 e3
[ e1,e2..e3 ] enumFromThenTo e1 e2 e3

There is an Enum instance for Integer and Char types and so we can write list comprehensions for both, which generate ranges of values.

λ: [1 .. 15]
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]

λ: ['a' .. 'z']
"abcdefghijklmnopqrstuvwxyz"

λ: [1,3 .. 15]
[1,3,5,7,9,11,13,15]

λ: [0,50..500]
[0,50,100,150,200,250,300,350,400,450,500]

These comprehensions can be used inside of function definitions and reference locally bound variables. For example the factorial function (written as n!) is defined as the product of all positive integers up to a given value.

factorial :: Integer -> Integer
factorial n = product [1..n]

As a more complex example consider a naive prime number sieve:

primes :: [Integer]
primes = sieve [2..] 
  where
    sieve (p:xs) = p : sieve [ n | n <- xs, n `mod` p > 0 ]

And a more complex example, consider the classic FizzBuzz interview question. This makes use of iteration and guard statements.

fizzbuzz :: [String]
fizzbuzz = [fb x| x <- [1..100]]
    where fb y
        | y `mod` 15 == 0 = "FizzBuzz"
        | y `mod` 3  == 0 = "Fizz"
        | y `mod` 5  == 0 = "Buzz"
        | otherwise  = show y

Comments

Single line comments begin with double dashes --:

-- Everything should be built top-down, except the first time.

Multiline comments begin with {- and end with -}.

{-
The goal of computation is the emulation of our synthetic abilities, not the
understanding of our analytic ones.
-}

Comments may also add additional structure in the form of Haddock docstrings. These comments will begin with a pipe.

{-|
  Great ambition without contribution is without significance.
-}

Modules may also have a comment convention which describes the individual authors, copyright and stability information in the following form:

{-|
Module      : MyEnterpriseModule
Description : Make it so.
Copyright   : (c) Jean Luc Picard
License     : MIT
Maintainer  : jl@enterprise.com
Stability   : experimental
Portability : POSIX

Description of module structure in Haddock markup style.
-}

Typeclasses

Typeclasses are one of the core abstractions in Haskell. Just as we wrote polymorphic functions above which operate over all given types (the id function is one example), we can use typeclasses to provide a form of bounded polymorphism which constrains type variables to a subset of those types that implement a given class.

For example we can define an equality class which allows us to define an overloaded notion of equality depending on the data structure provided.

class Equal a where
  equal :: a -> a -> Bool

Then we can define this typeclass over several different types. These definitions are called typeclass instances. For example for the Bool type the equality typeclass would be defined as:

instance Equal Bool where
  equal True True   = True
  equal False False = True
  equal True False  = False
  equal False True  = False

Over the unit type, where only a single value exists, the instance is trivial:

instance Equal () where
  equal () () = True

For the Ordering type, defined as:

data Ordering = LT | EQ | GT

We would have the following Equal instance:

instance Equal Ordering where
  equal LT LT = True
  equal EQ EQ = True
  equal GT GT = True
  equal _ _   = False

An Equal instance for a more complex data structure like the list type relies upon the fact that the type of the elements in the list must also have a notion of equality, so we include this as a constraint in the typeclass context, which is written to the left of the fat arrow =>. With this constraint in place, we can write this instance recursively by pattern matching on the list elements and checking for equality all the way down the spine of the list:

instance (Equal a) => Equal [a] where
  equal [] [] = True   -- Empty lists are equal
  equal [] ys = False  -- Lists of unequal size are not equal
  equal xs [] = False
  -- equal x y is only allowed here due to the constraint (Equal a)
  equal (x:xs) (y:ys) = equal x y && equal xs ys

In the above definition, we know that we can check for equality between individual list elements if those list elements satisfy the Equal constraint. Knowing that they do, we can then check for equality between two complete lists.

For tuples, we will also include the Equal constraint for their elements, and we can then check each element for equality respectively. Note that this instance includes two constraints in the context of the typeclass, requiring that both type variables a and b must also have an Equal instance.

instance (Equal a, Equal b) => Equal (a,b) where
  equal (x0, x1) (y0, y1) = equal x0 y0 && equal x1 y1

The default prelude comes with a variety of typeclasses that are used frequently and defined over many prelude types:

To see the implementation for any of these typeclasses you can run the GHCi info command to see the methods and all instances in scope. For example:

λ: :info Num
 class (Eq a, Show a) => Num a where
   (+) :: a -> a -> a
   (*) :: a -> a -> a
   (-) :: a -> a -> a
   negate :: a -> a
   abs :: a -> a
   signum :: a -> a
   fromInteger :: Integer -> a
         -- Imported from GHC.Num
 instance Num Float      -- Imported from GHC.Float
 instance Num Double     -- Imported from GHC.Float
 instance Num Integer    -- Imported from GHC.Num
 instance Num Int        -- Imported from GHC.Num

Many of the default classes have instances that can be derived automatically. After the definition of a datatype you can add a deriving clause which will generate the instances for this datatype automatically. This does not work universally but for many instances which have boilerplate definitions, GHC is quite clever and can save you from writing quite a bit of code by hand.

For example for a custom list type.

data List a
  = Cons a (List a)
  | Nil
  deriving (Eq, Ord, Show)

Side Effects

Contrary to a common misconception, side effects are an integral part of Haskell programming. Probably the most interesting thing about Haskell’s approach to side effects is that they are encoded in the type system. This is certainly a different approach to effectful programming, and the language has various models for modeling these effects within the type system. These models range from using Monads to building algebraic models of effects that draw clear lines between effectful code and pure code. The idea of reasoning about where effects can and cannot exist is one of the key ideas of Haskell, but this certainly does not mean trying to avoid side effects altogether!

Indeed, a Hello World program in Haskell is quite simple:

main :: IO ()
main = print "Hello World"

Other side effects can include reading from the terminal and prompting the user for input, such as in the complete program below:

main :: IO ()
main = do
  print "Enter a number"
  n <- getLine
  print ("You entered: " ++ n)

Records

Records in Haskell are fundamentally broken for several reasons:

  1. The syntax is unconventional.

Most programming languages use dot or arrow syntax for field accessors like the following:

person.name
person->name

Haskell however uses function application syntax since record accessors are simply just functions. Instead or creating a privileged class of names and syntax for field accessors, Haskell instead choose to implement the simplest model and expands accessors to function during compilation.

name person
person {name="foo"}
  1. Incomplete pattern matches are implicitly generated for sums of products.
data Example = Ex1 { a :: Int } | Ex2 { b :: Int }

The functions generated for a or b in both of these cases are partial. See Exhaustiveness checking.

  1. Lack of Namespacing

Given two records defined in the same module (or imported) GHC is unable to (by default) disambiguate which field accessor to assign at a callsite that uses a.

data Example1 = Ex1 { a :: Int }
data Example2 = Ex2 { a :: Int }

This can be routed around with the language extension DisambiguateRecordFields but only to a certain extent. If we want to write maximally polymorphic functions which operate over arbitrary records which have a field a, then the GHC typesystem is not able to express this without some much higher-level magic.

Pragmas

At the beginning of a module there is special syntax for pragmas which direct the compiler to compile the current module in a specific way. The most common is a language extension pragma denoted like the following:

{-# LANGUAGE FlexibleInstances #-}

These flags alter the semantics and syntax of the module in a variety of ways. See Language Extensions for more details on all of these options.

Additionally we can pass specific GHC flags which alter the compilation behavior, enabling or disabling specific bespoke features based on our needs. These include compiler warnings, optimisation flags and extension flags.

{-# OPTIONS_GHC -fwarn-incomplete-patterns #-}

Warning flags allow you to inform users at compile-time with a custom error message. Additionally you can mark a module as deprecated with a specific replacement message.

module Widget {-# DEPRECATED "This module is deprecated." #-}
module Widget {-# WARNING "This module is dangerous." #-}

Newtypes

Newtypes are a form of zero-cost abstraction that allows developers to specify compile-time names for types for which the developer wishes to expose a more restrictive interface. They’re zero-cost because these newtypes end up with the same underlying representation as the things they differentiate. This allows the compiler to distinguish between different types which are representationally identical but semantically different.

For instance velocity can be represented as a scalar quantity represented as a double but the user may not want to mix doubles with other vector quantities. Newtypes allow us to distinguish between scalars and vectors at compile time so that no accidental calculations can occur.

newtype Velocity = Velocity Double

Most importantly these newtypes disappear during compilation and the velocity type will be represented as simply just a machine double with no overhead.

See also the section on Newtype Deriving for a further discussion of tricks involved with handling newtypes.

Bottoms

The bottom is a singular value that inhabits every type. When this value is evaluated, the semantics of Haskell no longer yield a meaningful value. In other words, further operations on the value cannot be defined in Haskell. A bottom value is usually written as the symbol , ( i.e. the compiler flipping you off ). Several ways exist to express bottoms in Haskell code.

For instance, undefined is an easily called example of a bottom value. This function has type a but lacks any type constraints in its type signature. Thus, undefined is able to stand in for any type in a function body, allowing type checking to succeed, even if the function is incomplete or lacking a definition entirely. The undefined function is extremely practical for debugging or to accommodate writing incomplete programs.

undefined :: a


mean :: Num a => Vector a -> a
mean nums = (total / count) where            -- Partially defined function
              total = undefined
              count = undefined

addThreeNums :: Num a => a -> a -> a -> a
addThreeNums n m j = undefined               -- No function body declared at all

f :: a -> Complicated Type
f = undefined                                -- Write tomorrow, typecheck today!
                                             -- Arbitrarily complicated types
                                             -- welcome!

Another example of a bottom value comes from the evaluation of the error function, which takes a String and returns something that can be of any type. This property is quite similar to undefined, which also can also stand in for any type.

Calling error in a function causes the compiler to throw an exception, halt the program, and print the specified error message.

error :: String -> a                       -- Takes an error message of type
                                           -- String and returns whatever type
                                           -- is needed

In the divByY function below, passing the function 0 as the divisor results in this function returning such an exception.


-- Annotated code that features use of the error function.

divByY:: (Num a, Eq a, Fractional a) => a -> a -> a
divByY _ 0 = error "Divide by zero error"      -- Dividing by 0 causes an error
divByY dividend divisor = dividend / divisor   -- Handles defined division

A third type way to express a bottom is with an infinitely looping term:

f :: a
f = let x = x in x

Examples of actual Haskell code that use this looping syntax lives in the source code of the GHC.Prim module. These bottoms exist because the operations cannot be defined in native Haskell. Such operations are baked into the compiler at a very low level. However, this module exists so that Haddock can generate documentation for these primitive operations, while the looping syntax serves as a placeholder for the actual implementation of the primops.

Perhaps the most common introduction to bottoms is writing a partial function that does not have exhaustive pattern matching defined. For example, the following code has non-exhaustive pattern matching because the case expression, lacks a definition of what to do with a B:

data F = A | B

case x of
  A -> ()

The code snippet above is translated into the following GHC Core output where the compiler will insert an exception to account for the non-exhaustive patterns:

case x of _ {
  A -> ();
  B -> patError "<interactive>:3:11-31|case"
}

GHC can be made more vocal about incomplete patterns using the -fwarn-incomplete-patterns and -fwarn-incomplete-uni-patterns flags.

A similar situation can arise with records. Although constructing a record with missing fields is rarely useful, it is still possible.

data Foo = Foo { example1 :: Int }
f = Foo {}     -- Record defined with a missing field

When the developer omits a field’s definition, the compiler inserts an exception in the GHC Core representation:

Foo (recConError "<interactive>:4:9-12|a")

Fortunately, GHC will warn us by default about missing record fields.

Bottoms are used extensively throughout the Prelude, although this fact may not be immediately apparent. The reasons for including bottoms are either practical or historical.

The canonical example is the head function which has type [a] -> a. This function could not be well-typed without the bottom.

-- | Extract the first element of a list, which must be non-empty.
head                    :: [a] -> a
head (x:_)              =  x
head []                 =  error "Prelude.head: empty list"

Some further examples of bottoms:

import GHC.Err
import Prelude hiding (head, (!!), undefined)

-- degenerate functions

undefined :: a
undefined =  error "Prelude.undefined"

head :: [a] -> a
head (x:_) =  x
head []    =  error "Prelude.head: empty list"

(!!) :: [a] -> Int -> a
xs     !! n | n < 0 =  error "Prelude.!!: negative index"
[]     !! _         =  error "Prelude.!!: index too large"
(x:_)  !! 0         =  x
(_:xs) !! n         =  xs !! (n-1)

It is rare to see these partial functions thrown around carelessly in production code because they cause the program to halt. The preferred method for handling exceptions is to combine the use of safe variants provided in Data.Maybe with the functions maybe and either.

Another method is to use pattern matching, as shown in listToMaybe, a safer version of head described below:

listToMaybe :: [a] -> Maybe a
listToMaybe []     =  Nothing    -- An empty list returns Nothing
listToMaybe (a:_)  =  Just a     -- A non-empty list returns the first element
                                 -- wrapped in the Just context.

Invoking a bottom defined in terms of error typically will not generate any position information. However, assert, which is used to provide assertions, can be short-circuited to generate position information in place of either undefined or error calls.

import GHC.Base

foo :: a
foo = undefined
-- *** Exception: Prelude.undefined

bar :: a
bar = assert False undefined
-- *** Exception: src/fail.hs:8:7-12: Assertion failed

See: Avoiding Partial Functions

Exhaustiveness

Pattern matching in Haskell allows for the possibility of non-exhaustive patterns. For example, passing Nothing to unsafe will cause the program to crash at runtime. However, this function is an otherwise valid, type-checked program.

unsafe :: Num a => Maybe a -> Maybe a
unsafe (Just x) = Just $ x + 1

Since unsafe takes a Maybe a value as its argument, two possible values are valid input: Nothing and Just a. Since the case of a Nothing was not defined in unsafe, we say that the pattern matching within that function is non-exhaustive. In other words, the function does not implement appropriate handling of all valid inputs. Instead of yielding a value, such a function will halt from an incomplete match.

Partial functions from non-exhaustivity are a controversial subject, and frequent use of non-exhaustive patterns is considered a dangerous code smell. However, the complete removal of non-exhaustive patterns from the language would itself be too restrictive and forbid too many valid programs.

Several flags exist that we can pass to the compiler to warn us about such patterns or forbid them entirely, either locally or globally.

$ ghc -c -Wall -Werror A.hs
A.hs:3:1:
    Warning: Pattern match(es) are non-exhaustive
             In an equation for `unsafe': Patterns not matched: Nothing

The -Wall or -fwarn-incomplete-patterns flag can also be added on a per-module basis by using the OPTIONS_GHC pragma.

{-# OPTIONS_GHC -Wall #-}
{-# OPTIONS_GHC -fwarn-incomplete-patterns #-}

A more subtle case of non-exhaustivity is the use of implicit pattern matching with a single uni-pattern in a lambda expression. In a manner similar to the unsafe function above, a uni-pattern cannot handle all types of valid input. For instance, the function boom will fail when given a Nothing, even though the type of the lambda expression’s argument is a Maybe a.

boom = \(Just a) -> something

Non-exhaustivity arising from uni-patterns in lambda expressions occurs frequently in let or do-blocks after desugaring, because such code is translated into lambda expressions similar to boom.

boom2 = let
  Just a = something

boom3 = do
  Just a <- something

GHC can warn about these cases of non-exhaustivity with the -fwarn-incomplete-uni-patterns flag.

Generally speaking, any non-trivial program will use some measure of partial functions. It is simply a fact. Thus, there exist obligations for the programmer that cannot be manifested in the Haskell type system.

Debugger

Since GHC version 6.8.1, a built-in debugger has been available, although its use is somewhat rare. Debugging uncaught exceptions is in a similar style to debugging segfaults with gdb. Breakpoints can be set with :break and the call stack stepped through with :forward and :back.

λ: :set -fbreak-on-exception  -- Sets option for evaluation to stop on exception
λ: :break 2 15                -- Sets a break point at line 2, column 15
λ: :trace main                -- Run a function to generate a sequence of evaluation steps
λ: :hist                      -- Step back from a breakpoint through previous evaluation steps
λ: :back                      -- Step backwards a single step at a time through the history
λ: :forward                   -- Step forward a single step at a time through the history

Stack Traces

With runtime profiling enabled, GHC can also print a stack trace when a diverging bottom term (error, undefined) is hit. This action, though, requires a special flag and profiling to be enabled, both of which are disabled by default. So, for example:

import Control.Exception

f x = g x

g x = error (show x)

main = try (evaluate (f ())) :: IO (Either SomeException ())
$ ghc -O0 -rtsopts=all -prof -auto-all --make stacktrace.hs
./stacktrace +RTS -xc

And indeed, the runtime tells us that the exception occurred in the function g and enumerates the call stack.

*** Exception (reporting due to +RTS -xc): (THUNK_2_0), stack trace:
  Main.g,
  called from Main.f,
  called from Main.main,
  called from Main.CAF
  --> evaluated by: Main.main,
  called from Main.CAF

It is best to run this code without optimizations applied -O0 so as to preserve the original call stack as represented in the source. With optimizations applied, GHC will rearrange the program in rather drastic ways, resulting in what may be an entirely different call stack.

Printf Tracing

Since Haskell is a pure language it has the unique property that most code is introspectable on its own. As such, using printf to display the state of the program at critical times throughout execution is often unnecessary because we can simply open GHCi and test the function. Nevertheless, Haskell does come with an unsafe trace function which can be used to perform arbitrary print statements outside of the IO monad. You can place these statements wherever you like in your code without without IO restrictions.

import Debug.Trace

example1 :: Int
example1 = trace "impure print" 1

example2 :: Int
example2 = traceShow "tracing" 2

example3 :: [Int]
example3 = [trace "will not be called" 3]

main :: IO ()
main = do
  print example1
  print example2
  print $ length example3
-- impure print
-- 1
-- "tracing"
-- 2
-- 1

Trace uses unsafePerformIO under the hood and should not be used in production code.

In addition to the trace function, several monadic trace variants are quite common.

import Text.Printf
import Debug.Trace

traceM :: (Monad m) => String -> m ()
traceM string = trace string $ return ()

traceShowM :: (Show a, Monad m) => a -> m ()
traceShowM = traceM . show

tracePrintfM :: (Monad m, PrintfArg a) => String -> a -> m ()
tracePrintfM s = traceM . printf s

Type Inference

While inference in Haskell is usually complete, there are cases where the principal type cannot be inferred. Three common cases are:

In each of these cases, Haskell needs a hint from the programmer, which may be provided by adding explicit type signatures.

Mutually Recursive Binding Groups

f x = const x g
g y = f 'A'

In this case, the inferred type signatures are correct in their usage, but they don’t represent the most general signatures. When GHC analyzes the module it analyzes the dependencies of expressions on each other, groups them together, and applies substitutions from unification across mutually defined groups. As such the inferred types may not be the most general types possible, and an explicit signature may be desired.

-- Inferred types
f :: Char -> Char
g :: t -> Char

-- Most general types
f :: a -> a
g :: a -> Char

Polymorphic recursion

data Tree a = Leaf | Bin a (Tree (a, a))

size Leaf = 0
size (Bin _ t) = 1 + 2 * size t

In the second case, recursion is polymorphic because the inferred type variable a in size spans two possible types (a and (a,a)). These two types won’t pass the occurs-check of the typechecker and it yields an incorrect inferred type:

    Occurs check: cannot construct the infinite type: t0 = (t0, t0)
    Expected type: Tree t0
      Actual type: Tree (t0, t0)
    In the first argument of `size', namely `t'
    In the second argument of `(*)', namely `size t'
    In the second argument of `(+)', namely `2 * size t'

Simply adding an explicit type signature corrects this. Type inference using polymorphic recursion is undecidable in the general case.

size :: Tree a -> Int
size Leaf = 0
size (Bin _ t) = 1 + 2 * size t

See: Static Semantics of Function and Pattern Bindings

Monomorphism Restriction

Finally Monomorphism restriction is a builtin typing rule. By default, it is turned on when compiling and off in GHCi. The practical effect of this rule is that types inferred for functions without explicit type signatures may be more specific than expected. This is because GHC will sometimes reduce a general type, such as Num to a default type, such as Double. This can be seen in the following example in GHCi:

λ: :set +t

λ: 3
3
it :: Num a => a

λ: default (Double)

λ: 3
3.0
it :: Num a => a

This rule may be deactivated with the NoMonomorphicRestriction extension, see below.

See:

Type Holes

Since the release of GHC 7.8, type holes allow underscores as stand-ins for actual values. They may be used either in declarations or in type signatures.

Type holes are useful in debugging incomplete programs. By placing an underscore on any value on the right hand-side of a declaration, GHC will throw an error during type-checking. The error message describes which values may legally fill the type hole.

head' = head _
typedhole.hs:3:14: error:
     Found hole: _ :: [a]
      Where: ‘a’ is a rigid type variable bound by
               the inferred type of head' :: a at typedhole.hs:3:1
    • In the first argument of ‘head’, namely ‘_’
      In the expression: head _
      In an equation for ‘head'’: head' = head _
    • Relevant bindings include head' :: a (bound at typedhole.hs:3:1)

GHC has rightly suggested that the expression needed to finish the program is xs :: [a].

The same hole technique can be applied at the toplevel for signatures:

const' :: _
const' x y = x
typedhole.hs:5:11: error:
     Found type wildcard ‘_’ standing for ‘t -> t1 -> t’
      Where: ‘t1’ is a rigid type variable bound by
               the inferred type of const' :: t -> t1 -> t at typedhole.hs:6:1
             ‘t’ is a rigid type variable bound by
               the inferred type of const' :: t -> t1 -> t at typedhole.hs:6:1
      To use the inferred type, enable PartialTypeSignatures
     In the type signature:
        const' :: _
    • Relevant bindings include
        const' :: t -> t1 -> t (bound at typedhole.hs:6:1)

Pattern wildcards can also be given explicit names so that GHC will use the names when reporting the inferred type in the resulting message.

foo :: _a -> _a
foo _ = False
typedhole.hs:9:9: error:
     Couldn't match expected type ‘_a’ with actual type ‘Bool’
      ‘_a’ is a rigid type variable bound by
        the type signature for:
          foo :: forall _a. _a -> _a
        at typedhole.hs:8:8
    • In the expression: False
      In an equation for ‘foo’: foo _ = False
    • Relevant bindings include
        foo :: _a -> _a (bound at typedhole.hs:9:1)

The same wildcards can be used in type contexts to dump out inferred type class constraints:

succ' :: _ => a -> a
succ' x = x + 1
typedhole.hs:11:10: error:
    Found constraint wildcard ‘_’ standing for ‘Num a’
    To use the inferred type, enable PartialTypeSignatures
    In the type signature:
      succ' :: _ => a -> a

When the flag -XPartialTypeSignatures is passed to GHC and the inferred type is unambiguous, GHC will let us leave the holes in place and the compilation will proceed with a warning instead of an error.

typedhole.hs:3:10: Warning:
    Found hole ‘_’ with type: w_
    Where: ‘w_’ is a rigid type variable bound by
                the inferred type of succ' :: w_ -> w_1 -> w_ at foo.hs:4:1
    In the type signature for ‘succ'’: _ -> _ -> _

Deferred Type Errors

Since the release of version 7.8, GHC supports the option of treating type errors as runtime errors. With this option enabled, programs will run, but they will fail when a mistyped expression is evaluated. This feature is enabled with the -fdefer-type-errors flag in three ways: at the module level, when compiled from the command line, or inside of a GHCi interactive session.

For instance, the program below will compile:

{-# OPTIONS_GHC -fdefer-type-errors #-} -- Enable deferred type
                                        -- errors at module level

x :: ()
x = print 3

y :: Char
y = 0

z :: Int
z = 0 + "foo"

main :: IO ()
main = do
  print x

However, when a pathological term is evaluated at runtime, we’ll see a message like this:

defer: defer.hs:4:5:
    Couldn't match expected type ‘()’ with actual type ‘IO ()’
    In the expression: print 3
    In an equation for ‘x’: x = print 3
(deferred type error)

This error tells us that while x has a declared type of (), the body of the function print 3 has a type of IO (). However, if the term is never evaluated, GHC will not throw an exception.

Name Conventions

Haskell uses short variable names as a convention. This is offputting at first but after you read enough Haskell, it ceases to be a problem. In addition there are several ad-hoc conventions that are typically adopted

Variable Convention
a,b,c.. Type level variable
x,y,z.. Value variables
f,g,h.. Higher order function values
x,y List head values
xs,ys List tail values
m Monadic type variable
t Monad transformer variable
e Exception value
s Monad state value
r Monad reader value
t Foldable or Traversable type variable
f Functor or applicative type variable
mX Maybe variable

Functions that end with a tick (like fold') are typically strict variants of a default lazy function.

foldl' :: (b -> a -> b) -> b -> t a -> b

Functions that end with a _ (like map_) are typically variants of a function which discards the output and returns void.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m ()

Variables that are pluralized xs, ys typically refer to list tails.

(++) []     ys = ys
(++) (x:xs) ys = x : xs ++ ys

Records that do not export their accessors will sometimes prefix them with underscores. These are sometimes interpreted by Template Haskell logic to produce derived field accessors.

data Point = Point
  { _x :: Int
  , _y :: Int
  }

Predicates will often prefix their function names with is, as in isPositive.

isPositive = (>0)

Functions which result in an Applicative or Monad type will often suffix their name with a A for Applicative or M for Monad. For example:

liftM :: Monad m => (a -> r) -> m a -> m r
liftA :: Applicative f => (a -> b) -> f a -> f b

Functions which have chirality in which they traverse a data structure (i.e. left-to-right or right-to-left) will often suffix the name with L or R for their iteration pattern. This is useful because often times these type signatures are identical.

mapAccumL :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumR :: Traversable t => (a -> b -> (a, c)) -> a -> t b -> (a, t c)

Functions working with mutable structures or monadic state will often adopt the following naming conventions:

newX      -- Create a new mutable X structure
writeX    -- Write to an existing mutable X structure
setX      -- Set the value of an existing mutable X structure
modifyX   -- Apply a function over existing mutable X structure

Functions that are prefixed with with typically take a value as their first argument and a function as their second argument returning the value with the function applied over some substructure as the result.

withBool :: String -> (Bool -> Parser a) -> Value -> Parser a

ghcid

ghcid is a lightweight IDE hook that allows continuous feedback whenever code is updated. It can be run from the command line in the root of the cabal project directory by specifying a command to run (e.g. ghci, cabal repl, or stack repl).

ghcid --command="cabal repl"   # Run cabal repl under ghcid
ghcid --command="stack repl"   # Run stack repl under ghcid
ghcid --command="ghci baz.hs"  # Open baz.hs under ghcid

When a Haskell module is loaded into ghcid, the code is evaluated in order to provide the user with any errors or warnings that would happen at compile time. When the developer edits and saves code loaded into ghcid, the program automatically reloads and evaluates the code for errors and warnings.

HLint

HLint is a source linter for Haskell that provides a variety of hints on code improvements. It can be customised and configured with custom rules, on a per-project basis. HLint is configured through a hlint.yaml file placed in the root of a project. To generate the default configuration run:

hlint --default > .hlint.yaml

Custom errors can be added to this file in order to match and suggest custom changes of code from the left hand side match to the right hand side replacement:

error: {lhs: "foo x", rhs: bar x}

HLint’s default is to warn on all possible failures. These can be disabled globally by adding ignore pragmas.

ignore: {name: Use let}

Or within specific modules by specifying the within option.

ignore: {name: Use let, within: MyModule}

See:

Docker Images

Haskell has stable Docker images that are widely used for deployments across Kubernetes and Docker environments. The two Dockerhub repositories of note are:

To import the official Haskell images with ghc and cabal-install include the following preamble in your Dockerfile with your desired GHC version.

FROM haskell:8.8.1

To import the stack images include the following preamble in your Dockerfile with your desired Stack resolver replaced.

FROM fpco/stack-build:lts-14.0

Continuous Integration

These days it is quite common to use cloud hosted continuous integration systems to test code from version control systems. There are many community contributed build scripts for different service providers, including the following:

See also the official CI repository:

Ormolu

Ormolu is an opinionated Haskell source formatter that produces a canonical way of rendering the Haskell abstract syntax tree to text. This ensures that code shared amongst teams and checked into version control conforms to a single universal standard for whitespace and lexeme placing. This is similar to tools in other languages such as go fmt.

For example running ormolu example.hs --inplace on the following module:

module Unformatted
  (a,b)
where

a :: Int
a =  42

b :: Int
b = a+ a

Will rerender the file as:

module Unformatted
  ( a,
    b,
  )
where

a :: Int
a = 42

b :: Int
b = a + a

Ormolu can be installed via a variety of mechanisms.

$ stack install ormolu --resolver=lts-14.14   # via stack
$ cabal new-install ormolu --installdir=/home/user/.local/bin # via cabal
$ nix-build -A ormolu   # via nix

See:

Haddock

Haddock is the automatic documentation generation tool for Haskell source code, and it integrates with the usual cabal toolchain. In this section, we will explore how to document code so that Haddock can generate documentation successfully.

Several frequent comment patterns are used to document code for Haddock. The first of these methods uses -- | to delineate the beginning of a comment:

-- | Documentation for f
f :: a -> a
f = ...

Multiline comments are also possible:

-- | Multiline documentation for the function
-- f with multiple arguments.
fmap :: Functor f
     => (a -> b)  -- ^ function
     -> f a       -- ^ input
     -> f b       -- ^ output

-- ^ is used to comment Constructors or Record fields:

data T a b
  = A a -- ^ Documentation for A
  | B b -- ^ Documentation for B

data R a b = R
  { f1 :: a -- ^ Documentation for the field f1
  , f2 :: b -- ^ Documentation for the field f2
  }

Elements within a module (i.e. values, types, classes) can be hyperlinked by enclosing the identifier in single quotes:

data T a b
  = A a -- ^ Documentation for 'A'
  | B b -- ^ Documentation for 'B'

Modules themselves can be referenced by enclosing them in double quotes:

-- | Here we use the "Data.Text" library and import
-- the 'Data.Text.pack' function.

haddock also allows the user to include blocks of code within the generated documentation. Two methods of demarcating the code blocks exist in haddock. For example, enclosing a code snippet in @ symbols marks it as a code block:

-- | An example of a code block.
--
-- @
--    f x = f (f x)
-- @

Similarly, it is possible to use bird tracks (>) in a comment line to set off a code block.

-- | A similar code block example that uses bird tracks (i.e. '>')
-- > f x = f (f x)

Snippets of interactive shell sessions can also be included in haddock documentation. In order to denote the beginning of code intended to be run in a REPL, the >>> symbol is used:

-- | Example of an interactive shell session embedded within documentation
--
-- >>> factorial 5
-- 120

Headers for specific blocks can be added by prefacing the comment in the module block with a *:

module Foo (
  -- * My Header
  example1,
  example2
)

Sections can also be delineated by $ blocks that pertain to references in the body of the module:

module Foo (
  -- $section1
  example1,
  example2
)

-- $section1
-- Here is the documentation section that describes the symbols
-- 'example1' and 'example2'.

Links can be added with the following syntax:

<url text>

Images can also be included, so long as the path is either absolute or relative to the directory in which haddock is run.

<<diagram.png title>>

haddock options can also be specified with pragmas in the source, either at the module or project level.

{-# OPTIONS_HADDOCK show-extensions, ignore-exports #-}
Option Description
ignore-exports Ignores the export list and includes all signatures in scope.
not-home Module will not be considered in the root documentation.
show-extensions Annotates the documentation with the language extensions used.
hide Forces the module to be hidden from Haddock.
prune Omits definitions with no annotations.

Unsafe Functions

As everyone eventually finds out there are several functions within the implementation of GHC (not the Haskell language) that can be used to subvert the type-system; these functions are marked with the prefix unsafe. Unsafe functions exist only for when one can manually prove the soundness of an expression but can’t express this property in the type-system, or externalities to Haskell.

unsafeCoerce :: a -> b         -- Unsafely coerce anything into anything
unsafePerformIO :: IO a -> a   -- Unsafely run IO action outside of IO

Using these functions to subvert the Haskell typesystem will cause all measure of undefined behavior with unimaginable pain and suffering, and so they are strongly discouraged. When initially starting out with Haskell there are no legitimate reasons to use these functions at all.


Monads

Monads form one of the core components for constructing Haskell programs. In their most general form monads are an algebraic building block that can give rise to ways of structuring control flow, handling data structures and orchestrating logic. Monads are a very general algebraic way of structuring code and have a certain reputation for being confusing. However their power and flexibility have become foundational to the way modern Haskell programs are structured.

There is a singular truth to keep in mind when learning monads.

A monad is just its algebraic laws. Nothing more, nothing less.

Eightfold Path to Monad Satori

Much ink has been spilled waxing lyrical about the supposed mystique of monads. Instead, I suggest a path to enlightenment:

  1. Don’t read the monad tutorials.
  2. No really, don’t read the monad tutorials.
  3. Learn about the Haskell typesystem.
  4. Learn what a typeclass is.
  5. Read the Typeclassopedia.
  6. Read the monad definitions.
  7. Use monads in real code.
  8. Don’t write monad-analogy tutorials.

In other words, the only path to understanding monads is to read the fine source, fire up GHC, and write some code. Analogies and metaphors will not lead to understanding.

Monad Myths

The following are all false:

Monad Methods

Monads are not complicated. They are implemented as a typeclass with two methods, return and (>>=) (pronounced “bind”). In order to implement a Monad instance, these two functions must be defined:

class Monad m where
  return :: a -> m a    -- N.B. 'm' refers to a type constructor
                        -- (e.g., Maybe, Either, etc.) that
                        -- implements the Monad typeclass

  (>>=)  :: m a -> (a -> m b) -> m b

The first type signature in the Monad class definition is for return. Any preconceptions one might have for the word “return” should be discarded. It has an entirely different meaning in the context of Haskell and acts very differently than in languages such as C, Python, or Java. Instead of being the final arbiter of what value a function produces, return in Haskell injects a value of type a into a monadic context (e.g., Maybe, Either, etc.), which is denoted as m a.

The other function essential to implementing a Monad instance is (>>=). This infix function takes two arguments. On its left side is a value with type m a, while on the right side is a function with type (a -> m b). The bind operation results in a final value of type m b.

A third, auxiliary function ((>>)) is defined in terms of the bind operation that discards its argument.

(>>) :: Monad m => m a -> m b -> m b
m >> k = m >>= \_ -> k

This definition says that (>>) has a left and right argument which are monadic with types m a and m b respectively, while the infix function yields a value of type m b. The actual implementation of (>>) says that when m is passed to (>>) with k on the right, the value k will always be yielded.

Monad Laws

In addition to specific implementations of (>>=) and return, all monad instances must satisfy three laws.

Law 1

The first law says that when return a is passed through (>>=) into a function f, this expression is exactly equivalent to f a.

return a >>= f ≡ f a    -- N.B. 'a' refers to a value, not a type

In discussing the next two laws, we’ll refer to a value m. This notation is shorthand for a value wrapped in a monadic context. Such a value has type m a, and could be represented more concretely by values like Nothing, Just x, or Right x. It is important to note that some of these concrete instantiations of the value m have multiple components. In discussing the second and third monad laws, we’ll see some examples of how this plays out.

Law 2

The second law states that a monadic value m passed through (>>=) into return is exactly equivalent to itself. In other words, using bind to pass a monadic value to return does not change the initial value.

m >>= return ≡ m        -- 'm' here refers to a value that has type 'm a'

A more explicit way to write the second Monad law exists. In this following example code, the first expression shows how the second law applies to values represented by non-nullary type constructors. The second snippet shows how a value represented by a nullary type constructor works within the context of the second law.

(SomeMonad val) >>= returnSomeMonad val  -- 'SomeMonad val' has type 'm a' just
                                            -- like 'm' from the first example of the
                                            -- second law

NullaryMonadType >>= returnNullaryMonadType

Law 3

While the first two laws are relatively clear, the third law may be more difficult to understand. This law states that when a monadic value m is passed through (>>=) to the function f and then the result of that expression is passed to >>= g, the entire expression is exactly equivalent to passing m to a lambda expression that takes one parameter x and outputs the function f applied to x. By the definition of bind, f x must return a value wrapped in the same monad. Because of this property, the resultant value of that expression can be passed through (>>=) to the function g, which also returns a monadic value.

(m >>= f) >>= g ≡ m >>= (\x -> f x >>= g)  -- Like in the last law, 'm' has
                                           -- has type 'm a'. The functions 'f'
                                           -- and 'g' have types '(a -> m b)'
                                           -- and '(b -> m c)' respectively

Again, it is possible to write this law with more explicit code. Like in the explicit examples for law 2, m has been replaced by SomeMonad val in order to be make it clear that there can be multiple components to a monadic value. Although little has changed in the code, it is easier to see that value –namely, val– corresponds to the x in the lambda expression. After SomeMonad val is passed through (>>=) to f, the function f operates on val and returns a result still wrapped in the SomeMonad type constructor. We can call this new value SomeMonad newVal. Since it is still wrapped in the monadic context, SomeMonad newVal can thus be passed through the bind operation into the function g.

((SomeMonad val) >>= f) >>= g ≡ (SomeMonad val) >>= (\x -> f x >>= g)

Monad law summary: Law 1 and 2 are identity laws (left and right identity respectively) and law 3 is the associativity law. Together they ensure that Monads can be composed and ‘do the right thing’.

See:

Do Notation

Monadic syntax in Haskell is written in a sugared form, known as do notation. The advantages of this special syntax are that it is easier to write and often easier to read, and it is entirely equivalent to simply applying the monad operations. The desugaring is defined recursively by the rules:

do { a <- f ; m } ≡ f >>= \a -> do { m }  -- bind 'f' to a, proceed to desugar
                                          -- 'm'

do { f ; m } ≡ f >> do { m }              -- evaluate 'f', then proceed to
                                          -- desugar  m

do { m } ≡ m

Thus, through the application of the desugaring rules, the following expressions are equivalent:

do
  a <- f                               -- f, g, and h are bound to the names a,
  b <- g                               -- b, and c. These names are then passed
  c <- h                               -- to 'return' to ensure that all values
  return (a, b, c)                     -- are wrapped in the appropriate monadic
                                       -- context

do {                                   -- N.B. '{}'  and ';' characters are
  a <- f;                              --  rarely used in do-notation
  b <- g;
  c <- h;
  return (a, b, c)
  }

f >>= \a ->
  g >>= \b ->
    h >>= \c ->
      return (a, b, c)

If one were to write the bind operator as an uncurried function (which is not how Haskell uses it) the same desugaring might look something like the following chain of nested binds with lambdas.

bindMonad(f, lambda a:
  bindMonad(g, lambda b:
    bindMonad(h, lambda c:
      returnMonad (a,b,c))))

In the do-notation, the monad laws from above are equivalently written:

Law 1

  do y <- return x
     f y

= do f x

Law 2

  do x <- m
     return x

= do m

Law 3

  do b <- do a <- m
             f a
     g b

= do a <- m
     b <- f a
     g b

= do a <- m
     do b <- f a
        g b

See:

Maybe Monad

The Maybe monad is the simplest first example of a monad instance. The Maybe monad models a computation which may fail to yield a value at any point during computation.

The Maybe type has two value constructors. The first, Just, is a unary constructor representing a successful computation, while the second, Nothing, is a nullary constructor that represents failure.

data Maybe a = Nothing | Just a

The monad instance describes the implementation of (>>=) for Maybe by pattern matching on the possible inputs that could be passed to the bind operation (i.e., Nothing or Just x). The instance declaration also provides an implementation of return, which in this case is simply Just.

instance Monad Maybe where
  (Just x) >>= k = k x            -- 'k' is a function with type  (a -> Maybe b)
  Nothing  >>= k = Nothing

  return = Just                   -- Just's type signature is (a -> Maybe a), in
                                  -- other words, extremely similar to the
                                  -- type of 'return' in the typeclass
                                  -- declaration above.

The following code shows some simple operations to do within the Maybe monad.

(Just 3) >>= (\x -> return (x + 1))
-- Just 4

In the above example, the value Just 3 is passed via (>>=) to the lambda function \x -> return (x + 1). x refers to the Int portion of Just 3, and we can use x in the second half of the lambda expression, return (x + 1) which evaluates to Just 4, indicating a successful computation.

In the second example, the value Nothing is passed via (>>=) to the same lambda function as in the previous example. However, according to the Maybe Monad instance, whenever Nothing is bound to a function, the expression’s result will be Nothing.

Nothing >>= (\x -> return (x + 1))
-- Nothing

Here, return is applied to 4 and results in Just 4.

return 4 :: Maybe Int
-- Just 4

The next code examples show the use of do notation within the Maybe monad to do addition that might fail. Desugared examples are provided as well.

example1 :: Maybe Int
example1 = do
  a <- Just 3 -- Bind 3 to name a
  b <- Just 4 -- Bind 4 to name b
  return $ a + b -- Evaluate (a + b), then use 'return' to ensure
      -- the result is in the Maybe monad in order to
      -- satisfy the type signature
      -- Just 7

desugared1 :: Maybe Int
desugared1 = Just 3 >>= \a -> -- This example is the desugared
  Just 4 >>= \b -> -- equivalent to example1
    return $ a + b

-- Just 7

example2 :: Maybe Int
example2 = do
  a <- Just 3 -- Bind 3 to name a
  b <- Nothing -- Bind Nothing to name b
  return $ a + b

-- Nothing

-- This result might be somewhat surprising, since
-- addition within the Maybe monad can actually
-- return 'Nothing'. This result occurs because one
-- of the values, Nothing, indicates computational
-- failure. Since the computation failed at one
-- step within the process, the whole computation
-- fails, leaving us with 'Nothing' as the final
-- result.

desugared2 :: Maybe Int
desugared2 = Just 3 >>= \a -> -- This example is the desugared
  Nothing >>= \b -> -- equivalent to example2
    return $ a + b
-- Nothing

List Monad

The List monad is the second simplest example of a monad instance. As always, this monad implements both (>>=) and return.

instance Monad [] where
  m >>= f   =  concat (map f m)          -- 'm' is a list
  return x  =  [x]

The definition of bind says that when the list m is bound to a function f, the result is a concatenation of map f over the list m. The return method simply takes a single value x and injects into a singleton list [x].

In order to demonstrate the List monad’s methods, we will define two values: m and f. m is a simple list, while f is a function that takes a single Int and returns a two element list [1, 0].

m :: [Int]
m = [1,2,3,4]

f :: Int -> [Int]
f = \x -> [1,0]               -- 'f' always returns [1, 0]

When applied to bind, evaluation proceeds as follows:

m >>= f
==> [1,2,3,4] >>= \x -> [1,0]
==> concat (map (\x -> [1,0]) [1,2,3,4])
==> concat ([[1,0],[1,0],[1,0],[1,0]])
==> [1,0,1,0,1,0,1,0]

The list comprehension syntax in Haskell can be implemented in terms of the list monad. List comprehensions can be considered syntactic sugar for more obviously monadic implementations. Examples a and b illustrate these use cases.

The first example (a) illustrates how to write a list comprehension. Although the syntax looks strange at first, there are elements of it that may look familiar. For instance, the use of <- is just like bind in a do notation: It binds an element of a list to a name. However, one major difference is apparent: a seems to lack a call to return. Not to worry, though, the [] fills this role. This syntax can be easily desugared by the compiler to an explicit invocation of return. Furthermore, it serves to remind the user that the computation takes place in the List monad.

a = [
      f x y |        -- Corresponds to 'f x y' in example b
      x <- xs,
      y <- ys,
      x == y         -- Corresponds to 'guard $ x == y' in example b
    ]

The second example (b) shows the list comprehension above rewritten with do notation:

-- Identical to `a`
b = do
  x <- xs
  y <- ys
  guard $ x == y     -- Corresponds to 'x == y' in example a
  return $ f x y     -- Corresponds to the '[]' and 'f x y' in example a

The final examples are further illustrations of the List monad. The functions below each return a list of 3-tuples which contain the possible combinations of the three lists that get bound the names a, b, and c. N.B.: Only values in the list bound to a can be used in a position of the tuple; the same fact holds true for the lists bound to b and c.

example :: [(Int, Int, Int)]
example = do
  a <- [1,2]
  b <- [10,20]
  c <- [100,200]
  return (a,b,c)
-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

desugared :: [(Int, Int, Int)]
desugared = [1, 2] >>= \a ->
              [10, 20] >>= \b ->
                [100, 200] >>= \c ->
                  return (a, b, c)
-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

IO Monad

Perhaps the most (in)famous example in Haskell of a type that forms a monad is IO. A value of type IO a is a computation which, when performed, does some I/O before returning a value of type a. These computations are called actions. IO actions executed in main are the means by which a program can operate on or access information from the external world. IO actions allow the program to do many things, including, but not limited to:

Conceptualizing I/O as a monad enables the developer to access information from outside the program, but also to use pure functions to operate on that information as data. The following examples will show how we can use IO actions and IO values to receive input from stdin and print to stdout.

Perhaps the most immediately useful function for doing I/O in Haskell is putStrLn. This function takes a String and returns an IO (). Calling it from main will result in the String being printed to stdout followed by a newline character.

putStrLn :: String -> IO ()

Here is some code that prints a couple of lines to the terminal. The first invocation of putStrLn is executed, causing the String to be printed to stdout. The result is bound to a lambda expression that discards its argument, and then the next putStrLn is executed.

main :: IO ()
main = putStrLn "Vesihiisi sihisi hississäään." >>=
         \_ -> putStrLn "Or in English: 'The water devil was hissing in her elevator'."

-- Sugared code, written with do notation
main :: IO ()
main = do putStrLn "Vesihiisi sihisi hississäään."
          putStrLn "Or in English: 'The water devil was hissing in her elevator'."

Another useful function is getLine which has type IO String. This function gets a line of input from stdin. The developer can then bind this line to a name in order to operate on the value within the program.

getLine :: IO String

The code below demonstrates a simple combination of these two functions as well as desugaring IO code. First, putStrLn prints a String to stdout to ask the user to supply their name, with the result being bound to a lambda that discards it argument. Then, getLine is executed, supplying a prompt to the user for entering their name. Next, the resultant IO String is bound to name and passed to putStrLn. Finally, the program prints the name to the terminal.

main :: IO ()
main = do putStrLn "What is your name: "
          name <- getLine
          putStrLn name

The next code block is the desugared equivalent of the previous example where the uses of (>>=) are made explicit.

main :: IO ()
main = putStrLn "What is your name:" >>=
       \_    -> getLine >>=
       \name -> putStrLn name

Our final example executes in the same way as the previous two examples. This example, though, uses the special (>>) operator to take the place of binding a result to the lambda that discards its argument.

main :: IO ()
main = putStrLn "What is your name: " >> (getLine >>= (\name -> putStrLn name))

See:

What’s the point?

Although it is difficult, if not impossible, to touch, see, or otherwise physically interact with a monad, this construct has some very interesting implications for programmers. For instance, consider the non-intuitive fact that we now have a uniform interface for talking about three very different, but foundational ideas for programming: Failure, Collections and Effects.

Let’s write down a new function called sequence which folds a function mcons over a list of monadic computations. We can think of mcons as analogous to the list constructor (i.e. (a : b : [])) except it pulls the two list elements out of two monadic values (p,q) by means of bind. The bound values are then joined with the list constructor :, before finally being rewrapped in the appropriate monadic context with return.

sequence :: Monad m => [m a] -> m [a]
sequence = foldr mcons (return [])

mcons :: Monad m => m t -> m [t] -> m [t]
mcons p q = do
  x <- p          -- 'x' refers to a singleton value
  y <- q          -- 'y' refers to a list. Because of this fact, 'x' can be
  return (x:y)    --  prepended to it

What does this function mean in terms of each of the monads discussed above?

Maybe

For the Maybe monad, sequencing a list of values within the Maybe context allows us to collect the results of a series of computations which can possibly fail. However, sequence yields the aggregated values only if each computation succeeds. In other words, if even one of the Maybe values in the initial list passed to sequenceis a Nothing, the result of evaluating sequence for the whole list will also be Nothing.

sequence :: [Maybe a] -> Maybe [a]
sequence [Just 3, Just 4]
-- Just [3,4]

sequence [Just 3, Just 4, Nothing]     -- Since one of the results is Nothing,
-- Nothing                             -- the whole computation fails

List

The bind operation for the list monad forms the pairwise list of elements from the two operands. Thus, folding the binds contained in mcons over a list of lists with sequence implements the general Cartesian product for an arbitrary number of lists.

sequence :: [[a]] -> [[a]]
sequence [[1,2,3],[10,20,30]]
-- [[1,10],[1,20],[1,30],[2,10],[2,20],[2,30],[3,10],[3,20],[3,30]]

IO

Applying sequence within the IO context results in still a different result. The function takes a list of IO actions, performs them sequentially, and then gives back the list of resulting values in the order sequenced.

sequence :: [IO a] -> IO [a]
sequence [getLine, getLine, getLine]
-- a                                  -- a, b, and 9 are the inputs given by the
-- b                                  -- user at the prompt
-- 9
-- ["a", "b", "9"]                    -- All inputs are returned in a list as
                                      -- an IO [String].

So there we have it, three fundamental concepts of computation that are normally defined independently of each other actually all share this similar structure. This unifying pattern can be abstracted out and reused to build higher abstractions that work for all current and future implementations. If you want a motivating reason for understanding monads, this is it! These insights are the essence of what I wish I knew about monads looking back.

See:

Reader Monad

The reader monad lets us access shared immutable state within a monadic context.

ask :: Reader r r
asks :: (r -> a) -> Reader r a
local :: (r -> r) -> Reader r a -> Reader r a
runReader :: Reader r a -> r -> a
import Control.Monad.Reader

data MyContext = MyContext
  { foo :: String
  , bar :: Int
  } deriving (Show)

computation :: Reader MyContext (Maybe String)
computation = do
  n <- asks bar
  x <- asks foo
  if n > 0
    then return (Just x)
    else return Nothing

ex1 :: Maybe String
ex1 = runReader computation $ MyContext "hello" 1

ex2 :: Maybe String
ex2 = runReader computation $ MyContext "haskell" 0

A simple implementation of the Reader monad:

newtype Reader r a = Reader { runReader :: r -> a }

instance Monad (Reader r) where
  return a = Reader $ \_ -> a
  m >>= k  = Reader $ \r -> runReader (k (runReader m r)) r

ask :: Reader a a
ask = Reader id

asks :: (r -> a) -> Reader r a
asks f = Reader f

local :: (r -> r) -> Reader r a -> Reader r a
local f m = Reader $ runReader m . f

Writer Monad

The writer monad lets us emit a lazy stream of values from within a monadic context.

tell :: w -> Writer w ()
execWriter :: Writer w a -> w
runWriter :: Writer w a -> (a, w)
import Control.Monad.Writer

type MyWriter = Writer [Int] String

example :: MyWriter
example  = do
  tell [1..3]
  tell [3..5]
  return "foo"

output :: (String, [Int])
output = runWriter example
-- ("foo", [1, 2, 3, 3, 4, 5])

A simple implementation of the Writer monad:

import Data.Monoid

newtype Writer w a = Writer { runWriter :: (a, w) }

instance Monoid w => Monad (Writer w) where
  return a = Writer (a, mempty)
  m >>= k  = Writer $ let
      (a, w)  = runWriter m
      (b, w') = runWriter (k a)
      in (b, w `mappend` w')

execWriter :: Writer w a -> w
execWriter m = snd (runWriter m)

tell :: w -> Writer w ()
tell w = Writer ((), w)

This implementation is lazy, so some care must be taken that one actually wants to only generate a stream of thunks. Most often the lazy writer is not suitable for use, instead implement the equivalent structure by embedding some monomial object inside a StateT monad, or using the strict version.

import Control.Monad.Writer.Strict

State Monad

The state monad allows functions within a stateful monadic context to access and modify shared state.

runState  :: State s a -> s -> (a, s)
evalState :: State s a -> s -> a
execState :: State s a -> s -> s
import Control.Monad.State

test :: State Int Int
test = do
  put 3
  modify (+1)
  get

main :: IO ()
main = print $ execState test 0

The state monad is often mistakenly described as being impure, but it is in fact entirely pure and the same effect could be achieved by explicitly passing state. A simple implementation of the State monad takes only a few lines:

newtype State s a = State { runState :: s -> (a,s) }

instance Monad (State s) where
  return a = State $ \s -> (a, s)

  State act >>= k = State $ \s ->
    let (a, s') = act s
    in runState (k a) s'

get :: State s s
get = State $ \s -> (s, s)

put :: s -> State s ()
put s = State $ \_ -> ((), s)

modify :: (s -> s) -> State s ()
modify f = get >>= \x -> put (f x)

evalState :: State s a -> s -> a
evalState act = fst . runState act

execState :: State s a -> s -> s
execState act = snd . runState act

Why are monads confusing?

So many monad tutorials have been written that it begs the question: what makes monads so difficult when first learning Haskell? I hypothesize there are three aspects to why this is so:

  1. There are several levels of indirection with desugaring.

A lot of the Haskell we write is radically rearranged and transformed into an entirely new form under the hood.

Most monad tutorials will not manually expand out the do-sugar. This leaves the beginner thinking that monads are a way of dropping into a pseudo-imperative language inside of pure code and further fuels the misconception that specific instances like IO describe monads in their full generality. When in fact the IO monad is only one among many instances.

main = do
  x <- getLine
  putStrLn x
  return ()

Being able to manually desugar is crucial to understanding.

main =
  getLine >>= \x ->
    putStrLn x >>= \_ ->
      return ()
  1. Infix operators for higher order functions are not common in other languages.
(>>=) :: Monad m => m a -> (a -> m b) -> m b

On the left hand side of the operator we have an m a and on the right we have a -> m b. Thus, this operator is asymmetric, utilizing a monadic value on the left and a higher order function on the right. Although some languages do have infix operators that are themselves higher order functions, it is still a rather rare occurrence.

Thus, with a function desugared, it can be confusing that (>>=) operator is in fact building up a much larger function by composing functions together.

main =
  getLine >>= \x ->
    putStrLn x >>= \_ ->
      return ()

Written in prefix form, it becomes a little bit more digestible.

main =
  (>>=) getLine (\x ->
    (>>=) (putStrLn x) (\_ ->
          return ()
    )
  )

Perhaps even removing the operator entirely might be more intuitive coming from other languages.

main = bind getLine (\x -> bind (putStrLn x) (\_ -> return ()))
  where
    bind x y = x >>= y
  1. Ad-hoc polymorphism is not commonplace in other languages.

Haskell’s implementation of overloading can be unintuitive if one is not familiar with type inference. Indeed, newcomers to Haskell often believe they can gain an intuition for monads in a way that will unify their understanding of all monads. This is a fallacy, however, because any particular monad instance is merely an instantiation of the monad typeclass functions implemented for that particular type.

This is all abstracted away from the user, but the (>>=) or bind function is really a function of 3 arguments with the extra typeclass dictionary argument ($dMonad) implicitly threaded around.

main $dMonad = bind $dMonad getLine (\x -> bind $dMonad (putStrLn x) (\_ -> return $dMonad ()))

In general, this is true for all typeclasses in Haskell and it’s true here as well, except in the case where the parameter of the monad class is unified (through inference) with a concrete class instance.

Now, all of these transformations are trivial once we understand them, they’re just typically not discussed. In my opinion the fundamental fallacy of monad tutorials is not that intuition for monads is hard to convey (nor are metaphors required!), but that novices often come to monads with an incomplete understanding of points (1), (2), and (3) and then trip on the simple fact that monads are the first example of a Haskell construct that is the confluence of all three.

Thus we make monads more difficult than they need to be. At the end of the day they are simple algebraic critters.


Monad Transformers

mtl / transformers

The descriptions of Monads in the previous chapter are a bit of a white lie. Modern Haskell monad libraries typically use a more general form of these, written in terms of monad transformers which allow us to compose monads together to form composite monads.

Imagine if you had an application that wanted to deal with a Maybe monad wrapped inside a State Monad, all wrapped inside the IO monad. This is the problem that monad transformers solve, a problem of composing different monads. At their core, monad transformers allow us to nest monadic computations in a stack with an interface to exchange values between the levels, called lift:

lift :: (Monad m, MonadTrans t) => m a -> t m a

In production code, the monads mentioned previously may actually be their more general transformer form composed with the Identity monad.

type State  s = StateT  s Identity
type Writer w = WriterT w Identity
type Reader r = ReaderT r Identity

The following table shows the relationships between these forms:

Monad Transformer Type Transformed Type
Maybe MaybeT Maybe a m (Maybe a)
Reader ReaderT r -> a r -> m a
Writer WriterT (a,w) m (a,w)
State StateT s -> (a,s) s -> m (a,s)

Just as the base monad class has laws, monad transformers also have several laws:

Law #1

lift . return = return

Law #2

lift (m >>= f) = lift m >>= (lift . f)

Or equivalently:

Law #1

  lift (return x)

= return x

Law #2

  do x <- lift m
     lift (f x)

= lift $ do x <- m
            f x

It’s useful to remember that transformers compose outside-in but are unrolled inside out.

Transformers

The lift definition provided above comes from the transformers library along with an IO-specialized form called liftIO:

lift :: (Monad m, MonadTrans t) => m a -> t m a
liftIO :: MonadIO m => IO a -> m a

These definitions rely on the following typeclass definitions, which describe composing one monad with another monad (the “t” is the transformed second monad):

class MonadTrans t where
    lift :: Monad m => m a -> t m a

class (Monad m) => MonadIO m where
    liftIO :: IO a -> m a

instance MonadIO IO where
    liftIO = id

Basics

The most basic use requires us to use the T-variants for each of the monad transformers in the outer layers and to explicitly lift and return values between the layers. Monads have kind (* -> *), so monad transformers which take monads to monads have ((* -> *) -> * -> *):

Monad (m :: * -> *)
MonadTrans (t :: (* -> *) -> * -> *)

For example, if we wanted to form a composite computation using both the Reader and Maybe monads, using MonadTrans we could use Maybe inside of a ReaderT to form ReaderT t Maybe a.

import Control.Monad.Reader

type Env = [(String, Int)]
type Eval a = ReaderT Env Maybe a

data Expr
  = Val Int
  | Add Expr Expr
  | Var String
  deriving (Show)

eval :: Expr -> Eval Int
eval ex = case ex of

  Val n -> return n

  Add x y -> do
    a <- eval x
    b <- eval y
    return (a+b)

  Var x -> do
    env <- ask
    val <- lift (lookup x env)
    return val

env :: Env
env = [("x", 2), ("y", 5)]

ex1 :: Eval Int
ex1 = eval (Add (Val 2) (Add (Val 1) (Var "x")))

example1, example2 :: Maybe Int
example1 = runReaderT ex1 env
example2 = runReaderT ex1 []

The fundamental limitation of this approach is that we find ourselves lift.lift.lifting and return.return.returning a lot.

mtl

The mtl library is the most commonly used interface for these monad tranformers, but mtl depends on the transformers library from which it generalizes the “basic” monads described above into more general transformers, such as the following:

instance Monad m => MonadState s (StateT s m)
instance Monad m => MonadReader r (ReaderT r m)
instance (Monoid w, Monad m) => MonadWriter w (WriterT w m)

This solves the “lift.lift.lifting” problem introduced by transformers.

ReaderT

By way of an example there exist three possible forms of the Reader monad. The first is the primitive version which no longer exists, but which is useful for understanding the underlying ideas. The other two are the transformers and mtl variants.

Reader

newtype Reader r a = Reader { runReader :: r -> a }

instance MonadReader r (Reader r) where
  ask       = Reader id
  local f m = Reader (runReader m . f)

ReaderT

newtype ReaderT r m a = ReaderT { runReaderT :: r -> m a }

instance (Monad m) => Monad (ReaderT r m) where
  return a = ReaderT $ \_ -> return a
  m >>= k  = ReaderT $ \r -> do
      a <- runReaderT m r
      runReaderT (k a) r

instance MonadTrans (ReaderT r) where
    lift m = ReaderT $ \_ -> m

MonadReader

class (Monad m) => MonadReader r m | m -> r where
  ask   :: m r
  local :: (r -> r) -> m a -> m a

instance (Monad m) => MonadReader r (ReaderT r m) where
  ask       = ReaderT return
  local f m = ReaderT $ \r -> runReaderT m (f r)

So, hypothetically the three variants of ask would be:

ask :: Reader r r
ask :: Monad m => ReaderT r m r
ask :: MonadReader r m => m r

In practice the mtl variant is the one commonly used in Modern Haskell.

Newtype Deriving

Newtype deriving is a common technique used in combination with the mtl library and as such we will discuss its use for transformers in this section.

As discussed in the newtypes section, newtypes let us reference a data type with a single constructor as a new distinct type, with no runtime overhead from boxing, unlike an algebraic datatype with a single constructor. Newtype wrappers around strings and numeric types can often drastically reduce accidental errors.

Consider the case of using a newtype to distinguish between two different text blobs with different semantics. Both have the same runtime representation as a text object, but are distinguished statically, so that plaintext can not be accidentally interchanged with encrypted text.

newtype Plaintext = Plaintext Text
newtype Cryptotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext

This is a surprisingly powerful tool as the Haskell compiler will refuse to compile any function which treats Cryptotext as Plaintext or vice versa!

The other common use case is using newtypes to derive logic for deriving custom monad transformers in our business logic. Using -XGeneralizedNewtypeDeriving we can recover the functionality of instances of the underlying types composed in our transformer stack.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

newtype Quantity v a = Quantity a
  deriving (Eq, Ord, Num, Show)

data Haskeller
type Haskellers = Quantity Haskeller Int

a = Quantity 2 :: Haskellers
b = Quantity 6 :: Haskellers

totalHaskellers :: Haskellers
totalHaskellers = a + b

newtype Velocity = Velocity { unVelocity :: Double }
  deriving (Eq, Ord)

v :: Velocity
v = Velocity 2.718

x :: Double
x = 2.718

-- Type error is caught at compile time even though
-- they are the same value at runtime!
err = v + x
Couldn't match type `Double' with `Velocity'
Expected type: Velocity
  Actual type: Double
In the second argument of `(+)', namely `x'
In the expression: v + x

Using newtype deriving with the mtl library typeclasses we can produce flattened transformer types that don’t require explicit lifting in the transform stack. For example, here is a little stack machine involving the Reader, Writer and State monads.

{-# LANGUAGE GeneralizedNewtypeDeriving #-}

import Control.Monad.Reader
import Control.Monad.Writer
import Control.Monad.State

type Stack   = [Int]
type Output  = [Int]
type Program = [Instr]

type VM a = ReaderT Program (WriterT Output (State Stack)) a

newtype Comp a = Comp { unComp :: VM a }
  deriving (Functor, Applicative, Monad, MonadReader Program, MonadWriter Output, MonadState Stack)

data Instr = Push Int | Pop | Puts

evalInstr :: Instr -> Comp ()
evalInstr instr = case instr of
  Pop    -> modify tail
  Push n -> modify (n:)
  Puts   -> do
    tos <- gets head
    tell [tos]

eval :: Comp ()
eval = do
  instr <- ask
  case instr of
    []     -> return ()
    (i:is) -> evalInstr i >> local (const is) eval

execVM :: Program -> Output
execVM = flip evalState [] . execWriterT . runReaderT (unComp eval)

program :: Program
program = [
     Push 42,
     Push 27,
     Puts,
     Pop,
     Puts,
     Pop
  ]

main :: IO ()
main = mapM_ print $ execVM program

Pattern matching on a newtype constructor compiles into nothing. For example theextractB function below does not scrutinize the MkB constructor like extractA does, because MkB does not exist at runtime; it is purely a compile-time construct.

data A = MkA Int
newtype B = MkB Int

extractA :: A -> Int
extractA (MkA x) = x

extractB :: B -> Int
extractB (MkB x) = x

Efficiency

The second monad transformer law guarantees that sequencing consecutive lift operations is semantically equivalent to lifting the results into the outer monad.

do x <- lift m  ==  lift $ do x <- m
   lift (f x)                 f x

Although they are guaranteed to yield the same result, the operation of lifting the results between the monad levels is not without cost and crops up frequently when working with the monad traversal and looping functions. For example, all three of the functions on the left below are less efficient than the right hand side which performs the bind in the base monad instead of lifting on each iteration.

-- Less Efficient      More Efficient
forever (lift m)    == lift (forever m)
mapM_ (lift . f) xs == lift (mapM_ f xs)
forM_ xs (lift . f) == lift (forM_ xs f)

Monad Morphisms

Although the base monad transformer package provides a MonadTrans class for lifting to another monad:

lift :: Monad m => m a -> t m a

But oftentimes we need to work with and manipulate our monad transformer stack to either produce new transformers, modify existing ones or extend an upstream library with new layers. The mmorph library provides the capacity to compose monad morphism transformation directly on transformer stacks. This is achieved primarily by use of the hoist function which maps a function from a base monad into a function over a transformed monad.

hoist :: Monad m => (forall a. m a -> n a) -> t m b -> t n b

Hoist takes a monad morphism (a mapping from a m a to a n a) and applies in on the inner value monad of a transformer stack, transforming the value under the outer layer.

The monad morphism generalize takes an Identity monad into any another monad m.

generalize :: Monad m => Identity a -> m a

For example, it generalizes State s a (which is StateT s Identity a) to StateT s m a.

So we can generalize an existing transformer to lift an IO layer onto it.

import Control.Monad.State
import Control.Monad.Morph

type Eval a = State [Int] a

runEval :: [Int] -> Eval a -> a
runEval = flip evalState

pop :: Eval Int
pop = do
  top <- gets head
  modify tail
  return top

push :: Int -> Eval ()
push x = modify (x:)

ev1 :: Eval Int
ev1 = do
  push 3
  push 4
  pop
  pop

ev2  :: StateT [Int] IO ()
ev2 = do
  result <- hoist generalize ev1
  liftIO $ putStrLn $ "Result: " ++ show result

See:

Effect Systems

The mtl model has several properties which make it suboptimal from a theoretical perspective. Although it is used widely in production Haskell we will discuss its shortcomings and some future models called effect systems.

Extensibility

When you add a new custom transformer inside of our business logic we’ll typically have to derive a large number of boilerplate instances to compose it inside of existing mtl transformer stack. For example adding MonadReader instance for n number of undecidable instances that do nothing but mostly lifts. You can see this massive boilerplate all over the design of the mtl library and its transitive dependencies.

instance MonadReader r m => MonadReader r (ExceptT e m) where
    ask   = lift ask
    local = mapExceptT . local
    reader = lift . reader

instance MonadReader r m => MonadReader r (IdentityT m) where
    ask   = lift ask
    local = mapIdentityT . local
    reader = lift . reader

-- Same for ListT, MaybeT, ...

...

This is called the n2 instance problem or the instance boilerplate problem and remains an open problem of mtl.

Composing Transformers

Effects don’t generally commute from a theoretical perspective and as such monad transformer composition is not in general commutative. For example stacking State and Except is not commutative:

stateExcept :: StateT s (Except e) a -> s -> Either e (a, s)
stateExcept m s = runExcept (runStateT m s)

exceptState :: ExceptT e (State s) a -> s -> (Either e a, s)
exceptState m s = runState (runExceptT m) s

In addition, the standard method of deriving mtl classes for a transformer stack breaks down when using transformer stacks with the same monad at different layers of the stack. For example stacking multiple State transformers is a pattern that shows up quite frequently.

newtype Example = StateT Int (State String)
  deriving (MonadState Int)

In order to get around this you would have to handwrite the instances for this transformer stack and manually lift anytime you perform a State action. This is a suboptimal design and difficult to route around without massive boilerplate.

While these problems exist, most users of mtl don’t implement new transformers at all and can get by. However in recent years there have been written many other libraries that have explored the design space of alternative effect modeling systems. These systems are still quite early compared to the mtl but some are able to avoid some of the shortcomings of mtl in favour of newer algebraic models of effects. The two most commonly used libraries are:

Polysemy

Polysemy is a new effect system library based on the free-monad approach to modeling effects. The library uses modern type system features to model effects on top of a Sem monad. The monad will have a members constraint type which constrains a parameter r by a type-level list of effects in the given unit of computation.

Members [ .. effects .. ] => Sem r a

For example we seamlessly mix and match error handling, tracing, and stateful updates inside of one computation without the need to create a layered monad. This would look something like the following:

Members '[Trace, State Example, Error MyError] r => Sem r ()

These effects can then be evaluated using an interpreter function which unrolls and potentially evaluates the effects of the Sem free monad. Some of these interpreters for tracing, state and error are similar to the evaluations for monad transformers but evaluate one layer of type-level list of the effect stack.

runError :: Sem (Error e ': r) a -> Sem r (Either e a)
runState :: s -> Sem (State s ': r) a -> Sem r (s, a)
runTraceList :: Sem (Trace ': r) a -> Sem r ([String], a)

The resulting Sem monad with a single field can then be lowered into a single resulting monad such as IO or Either.

runFinal :: Monad m => Sem '[Final m] a -> m a
embedToFinal :: (Member (Final m) r, Functor m) => Sem (Embed m ': r) a -> Sem r a

The library provides rich set of of effects that can replace many uses of monad transformers.

For example for a simple stateful computation with only a single effect.

data Example = Example { x :: Int, y :: Int }
  deriving (Show)

-- Stateful update to Example datastructure.
example1 :: Member (State Example) r => Sem r ()
example1 = do
  modify $ \s -> s {x = 1}
  pure ()

runExample1 :: IO ()
runExample1 = do
  (result, _) <-
    runFinal
      $ embedToFinal @IO
      $ runState (Example 0 0) example1
  print result

And a more complex example which combines multiple effects:

import Polysemy
import Polysemy.Error
import Polysemy.State
import Polysemy.Trace

data MyError = MyError
  deriving (Show)

-- Stateful update to Example datastructure, with errors and tracing.
example2 :: Members '[Trace, State Example, Error MyError] r => Sem r ()
example2 = do
  modify $ \s -> s {x = 1, y = 2}
  trace "foo"
  throw MyError
  pure ()

runExample2 :: IO ()
runExample2 = do
  result <-
    runFinal
      $ embedToFinal @IO
      $ errorToIOFinal @MyError
      $ runState (Example 0 0)
      $ traceToIO example2
  print result

Polysemy will require the following language extensions to operate:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

The use of free-monads is not entirely without cost, and there are experimental GHC plugins which can abstract away some of the overhead from the effect stack. Code thats makes use of polysemy should enable the following GHC flags to enable aggressive typeclass specialisation:

Fused Effects

Fused-effects is an alternative approach to effect systems based on an algebraic effects model. Unlike polysemy, fused-effects does not use a free monad as an intermediate form. Fused-effects has competitive performance compared with mtl and doesn’t require additional GHC plugins or extension compiler fusion rules to optimise away the abstraction overhead.

The fused-effects library exposes a constraint kind called Has which annotates a type signature that contains effectful logic. In this signature m is called the carrier for the sig effect signature containing the eff effect.

type Has eff sig m = (Members eff sig, Algebra sig m)

For example the traditional State effect is modeled by the following datatype with three parameters. The s parameter is the state object, the m is the effect parameter. This exposes the same interface as Control.Monad.State except for the Has constraint instead.

data State s m k
  = Get (s -> m k)
  | Put s (m k)
  deriving (Functor)

get :: Has (State s) sig m => m s
put :: Has (State s) sig m => s -> m ()

The Carrier for the State effect is defined as StateC and the evaluators for the state carrier are defined in the same interface as mtl except they evaluate into a result containing the effect parameter m.

newtype StateC s m a = StateC (s -> m (s, a))
  deriving (Functor)

runState :: s -> StateC s m a -> m (s, a)

The evaluators for the effect lift monadic actions from an effectful computation.

runM :: LiftC m a -> m a
run :: Identity a -> a

Fused-effects requires the following language extensions to operate.

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE UndecidableInstances #-}

Minimal Example

A minimal example using the State effect to track stateful updates to a single integral value.

example1 :: Has (State Integer) sig m => m Integer
example1 = do
  modify (+ 1)
  modify (* 10)
  get

The evaluation of this monadic state block results in a m Integer with the Algebra and Effect context. This can then be evaluated into either Identity or IO using run.

ex1 :: (Algebra sig m, Effect sig) => m Integer
ex1 = evalState (1 :: Integer) example1

run1 :: Identity Integer
run1 = runM ex1

run2 :: IO Integer
run2 = runM ex1

Composite Effects

Consider a more complex example which combines exceptions with Throw effect with State. Importantly note that functions runThrow and evalState cannot infer the state type from the signature alone and thus require additional annotations. This differs from mtl which typically has more optimal inference.

example2 ::
  ( Has (State (Double, Double)) sig m,
    Has (Throw ArithException) sig m
  ) =>
  m Double
example2 = do
  (a, b) <- get
  if b == 0
    then throwError DivideByZero
    else pure (a / b)

ex2 :: (Algebra sig m, Effect sig) => m (Either ArithException Double)
ex2 = runThrow $ evalState (1 :: Double, 2 :: Double) example2

ex3 :: (Algebra sig m, Effect sig) => m (Either ArithException Double)
ex3 = evalState (1 :: Double, 0 :: Double) (runThrow example2)

Language Extensions

Philosophy

Haskell takes a drastically different approach to language design than most other languages as a result of being the synthesis of input from industrial and academic users. GHC allows the core language itself to be extended with a vast range of opt-in flags which change the semantics of the language on a per-module or per-project basis. While this does add a lot of complexity at first, it also adds a level of power and flexibility for the language to evolve at a pace that is unrivaled in the broader space of programming language design.

Classes

It’s important to distinguish between different classes of GHC language extensions: general and specialized.

The inherent problem with classifying extensions into general and specialized categories is that it is a subjective classification. Haskellers who do theorem proving research will have a very different interpretation of Haskell than people who do web programming. Thus, we will use the following classifications:

Benign Historical Steals Syntax Use Use GHC Reference Reference
AllowAmbiguousTypes Specialized Typelevel Programming Ref
Arrows Specialized Syntax Extension Ref Arrows
AutoDeriveTypeable Specialized Deriving Ref
BangPatterns General Strictness Annotation Ref Strictness Annotations
ApplicativeDo Specialized FFI Ref Applicative Do
CApiFFI Specialized FFI Ref
ConstrainedClassMethods Specialized Typelevel Programming Ref
ConstraintKinds Specialized Typelevel Programming Ref Constraint Kinds
CPP General Preprocessor Ref Cpp
DataKinds Specialized Typelevel Programming Ref Data Kinds
DatatypeContexts Deprecated Deprecated Ref
DefaultSignatures Specialized Generic Programming Ref Generic
DeriveAnyClass General Deriving Ref
DeriveDataTypeable General Deriving Ref Typeable
DeriveFoldable General Deriving Ref Foldable / Traversable
DeriveFunctor General Deriving Ref
DeriveGeneric General Deriving Ref Generic
DeriveLift General Deriving Ref Template Haskell
DeriveTraversable General Deriving Ref
DisambiguateRecordFields Specialized Syntax Extension Ref
DuplicateRecordFields Specialized Syntax Extension Ref DuplicateRecordFields
DoRec Specialized Syntax Extension Ref Recursive Do
EmptyCase Specialized Syntax Extension Ref EmptyCase
EmptyDataDecls General Syntax Extension Ref Void
ExistentialQuantification Specialized Typelevel Programming Ref Existential Quantification
ExplicitForAll Specialized Typelevel Programming Ref Universal Quantification
ExplicitNamespaces Specialized Syntax Disambiguation Ref
ExtendedDefaultRules Specialized Type Disambiguation Ref
FlexibleContexts General Typeclass Extension Ref Flexible Contexts
FlexibleInstances General Typeclass Extension Ref Flexible Instances
ForeignFunctionInterface General FFI Ref FFI
FunctionalDependencies General Typeclass Extension Ref Multiparam Typeclasses
GADTs General Typelevel Programming Ref GADTs
GADTSyntax General Syntax Extension Ref GADTs
GeneralizedNewtypeDeriving General Typeclass Extension Ref Newtype Deriving
GHCForeignImportPrim Specialized FFI Ref Cmm
ImplicitParams Specialized Typelevel Programming Ref
ImpredicativeTypes Specialized Typelevel Programming Ref Impredicative Types
IncoherentInstances Specialized Typelevel Programming Ref Incoherent Instances
InstanceSigs Specialized Typelevel Programming Ref
InterruptibleFFI Specialized FFI Ref FFI
KindSignatures Specialized Typelevel Programming Ref Kind Signatures
LambdaCase General Syntax Extension Ref Lambda Case
LiberalTypeSynonyms Specialized Typeclass Extension Ref
MagicHash Specialized GHC Internals Ref Unboxed Types
MonadComprehensions Specialized Syntax Extension Ref
MonoLocalBinds General Type Disambiguation Ref
MonoPatBinds Specialized Type Disambiguation Ref
MultiParamTypeClasses General Typeclass Extension Ref Multiparam Typeclasses
MultiWayIf Specialized Syntax Extension Ref MultiWawyIf
NamedFieldPuns Specialized Syntax Extension Ref Named Field Puns
NegativeLiterals General Type Disambiguation Ref
NoImplicitPrelude Specialized Import Disambiguation Ref Custom Prelude
NoMonomorphismRestriction General Type Disambiguation Ref Monomorphism Restriction
NPlusKPatterns Deprecated Deprecated Ref
NullaryTypeClasses Specialized Typeclass Extension Ref Multiparam Typeclasses
NumDecimals General Type Disambiguation Ref NumDecimals
OverlappingInstances Specialized Typeclass Extension Ref Overlapping Instances
OverloadedLabels General Type Disambiguation Ref Overloaded Labels
OverloadedRecordFields General Syntax Extension Ref Overloaded Labels
OverloadedLists General Syntax Extension Ref Overloaded Lists
OverloadedStrings General Syntax Extension Ref Overloaded Strings
PackageImports General Import Disambiguation Ref Package Imports
ParallelArrays Specialized Data Parallel Haskell Ref
ParallelListComp General Syntax Extension Ref
PartialTypeSignatures General Interactive Typing Ref Partial Type Signatures
PatternGuards General Syntax Extension Ref Pattern Guards
PatternSynonyms General Syntax Extension Ref Pattern Synonyms
PolyKinds Specialized Typelevel Programming Ref Kind Polymorphism
PolymorphicComponents Specialized Deprecated Ref
PostfixOperators Specialized Syntax Extension Ref
QuasiQuotes Specialized Metaprogramming Ref QuasiQuotation
Rank2Types Specialized Historical Artifact Ref Rank N Types
RankNTypes Specialized Typelevel Programming Ref Rank N Types
RebindableSyntax Specialized Metaprogramming Ref Indexed Monads
RecordWildCards General Syntax Extension Ref Record Wildcards
RecursiveDo Specialized Syntax Extension Ref MonadFix
RelaxedPolyRec Specialized Type Disambiguation Ref
RoleAnnotations Specialized Type Disambiguation Ref Roles
Safe Specialized Security Auditing Ref Safe Haskell
SafeImports Specialized Security Auditing Ref Safe Haskell
ScopedTypeVariables Specialized Typelevel Programming Ref Scoped Type Variables
StandaloneDeriving General Typeclass Extension Ref
StaticPointers General Distributed Programming Ref
Strict General Strictness Annotations Ref Strict Haskell
StrictData General Strictness Annotations Ref Strict Haskell
TemplateHaskell Specialized Metaprogramming Ref Template Haskell
TraditionalRecordSyntax Specialized Historical Artifact Ref Historical Extensions
TransformListComp Specialized Syntax Extension Ref
Trustworthy Specialized Security Auditing Ref Safe Haskell
TupleSections General Syntax Extension Ref Tuple Sections
TypeApplications Specialized Typelevel Programming Ref
TypeFamilies Specialized Typelevel Programming Ref Type Families
TypeHoles General Interactive Typing Ref Type Holes
TypeInType Specialized Typelevel Programming Ref
TypeOperators Specialized Typelevel Programming Ref Manual Proofs
TypeSynonymInstances General Typeclass Extension Ref Type Synonym Instances
UnboxedTuples Specialized FFI Ref
UndecidableInstances Specialized Typelevel Programming Ref Multiparam Typeclasses
UnicodeSyntax Specialized Syntax Extension Ref
UnliftedFFITypes Specialized FFI Ref Cmm
Unsafe Specialized Security Auditing Ref Safe Haskell
ViewPatterns General Syntax Extension Ref View Patterns

The golden source of truth for language extensions is the official GHC user’s guide which contains a plethora of information on the details of these extensions.

See: GHC Extension Reference

Extension Dependencies

Some language extensions will implicitly enable other language extensions for their operation. The table below shows the dependencies between various extensions and which sets are implied.

Extension Implies
TypeFamilyDependencies TypeFamilies
TypeInType PolyKinds, DataKinds, KindSignatures
PolyKinds KindSignatures
ScopedTypeVariables ExplicitForAll
RankNTypes ExplicitForAll
ImpredicativeTypes RankNTypes
TemplateHaskell TemplateHaskellQuotes
Strict StrictData
RebindableSyntax NoImplicitPrelude
TypeOperators ExplicitNamespaces
LiberalTypeSynonyms ExplicitForAll
ExistentialQuantification ExplicitForAll
GADTs MonoLocalBinds, GADTSyntax
DuplicateRecordFields DisambiguateRecordFields
RecordWildCards DisambiguateRecordFields
DeriveTraversable DeriveFoldable, DeriveFunctor
MultiParamTypeClasses ConstrainedClassMethods
DerivingVia DerivingStrategies
FunctionalDependencies MultiParamTypeClasses
FlexibleInstances TypeSynonymInstances
TypeFamilies MonoLocalBinds, KindSignatures, ExplicitNamespaces
IncoherentInstances OverlappingInstances

The Benign

It’s not obvious which extensions are the most common but it’s fairly safe to say that these extensions are benign and are safely used extensively:

The Advanced

These extensions are typically used by advanced projects that push the limits of what is possible with Haskell to enforce complex invariants and very type-safe APIs.

The Lowlevel

These extensions are typically used by low-level libraries that are striving for optimal performance or need to integrate with foreign functions and native code. Most of these are used to manipulate base machine types and interface directly with the low-level byte representations of data structures.

The Dangerous

GHC’s typechecker sometimes casually tells us to enable language extensions when it can’t solve certain problems. Unless you know what you’re doing, these extensions almost always indicate a design flaw and shouldn’t be turned on to remedy the error at hand, as much as GHC might suggest otherwise!

NoMonomorphismRestriction

The NoMonomorphismRestriction allows us to disable the monomorphism restriction typing rule GHC uses by default. See monomorphism restriction.

For example, if we load the following module into GHCi

module Bad (foo,bar) where
foo x y = x + y
bar = foo 1

And then we attempt to call the function bar with a Double, we get a type error:

λ: bar 1.1
<interactive>:2:5: error:
     No instance for (Fractional Integer)
      arising from the literal ‘1.1’
     In the first argument of ‘bar’, namely ‘1.1’
      In the expression: bar 1.1
      In an equation for ‘it’: it = bar 1.1

The problem is that GHC has inferred an overly specific type:

λ: :t bar
bar :: Integer -> Integer

We can prevent GHC from specializing the type with this extension:

{-# LANGUAGE NoMonomorphismRestriction #-}

module Good (foo,bar) where
foo x y = x + y
bar = foo 1

Now everything will work as expected:

λ: :t bar
bar :: Num a => a -> a

ExtendedDefaultRules

In the absence of explicit type signatures, Haskell normally resolves ambiguous literals using several defaulting rules. When an ambiguous literal is typechecked, if at least one of its typeclass constraints is numeric and all of its classes are standard library classes, the module’s default list is consulted, and the first type from the list that will satisfy the context of the type variable is instantiated. For instance, given the following default rules

default (C1 a,...,Cn a)

The following set of heuristics is used to determine what to instantiate the ambiguous type variable to.

  1. The type variable a appears in no other constraints
  2. All the classes Ci are standard.
  3. At least one of the classes Ci is numerical.

The standard default definition is implicitly defined as (Integer, Double)

This is normally fine, but sometimes we’d like more granular control over defaulting. The -XExtendedDefaultRules loosens the restriction that we’re constrained with working on Numerical typeclasses and the constraint that we can only work with standard library classes. For example, if we’d like to have our string literals (using -XOverloadedStrings) automatically default to the more efficient Text implementation instead of String we can twiddle the flag and GHC will perform the right substitution without the need for an explicit annotation on every string literal.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ExtendedDefaultRules #-}

import qualified Data.Text as T

default (T.Text)

example = "foo"

For code typed at the GHCi prompt, the -XExtendedDefaultRules flag is always on, and cannot be switched off.

See: Monomorphism Restriction

Safe Haskell

The Safe Haskell language extensions allow us to restrict the use of unsafe language features using -XSafe which restricts the import of modules which are themselves marked as Safe. It also forbids the use of certain language extensions (-XTemplateHaskell) which can be used to produce unsafe code. The primary use case of these extensions is security auditing of codebases for compliance purposes.

{-# LANGUAGE Safe #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE Safe #-}

import Unsafe.Coerce
import System.IO.Unsafe

bad1 :: String
bad1 = unsafePerformIO getLine

bad2 :: a
bad2 = unsafeCoerce 3.14 ()
Unsafe.Coerce: Can't be safely imported!
The module itself isn't safe.

See: Safe Haskell

PartialTypeSignatures

Normally a function is either given a full explicit type signature or none at all. The partial type signature extension allows something in between.

Partial types may be used to avoid writing uninteresting pieces of the signature, which can be convenient in development:

{-# LANGUAGE PartialTypeSignatures #-}

triple :: Int -> _
triple i = (i,i,i)

If the -Wpartial-type-signatures GHC option is set, partial types will still trigger warnings.

See:

RecursiveDo

Recursive do notation allows for the use of self-reference expressions on both sides of a monadic bind. For instance the following example uses lazy evaluation to generate an infinite list. This is sometimes used to instantiate a cyclic datatype inside a monadic context where the datatype needs to hold a reference to itself.

{-# LANGUAGE RecursiveDo #-}

justOnes :: Maybe [Int]
justOnes = do
  rec xs <- Just (1:xs)
  return (map negate xs)

See: Recursive Do Notation

ApplicativeDo

By default GHC desugars do-notation to use implicit invocations of bind and return. With normal monad sugar the following…

test :: Monad m => m (a, b, c)
test = do
  a <- f
  b <- g
  c <- h
  return (a, b, c)

… desugars into:

test :: Monad m => m (a, b, c)
test =
f >>= \a ->
  g >>= \b ->
    h >>= \c ->
      return (a, b, c)

With ApplicativeDo this instead desugars into use of applicative combinators and a laxer Applicative constraint.

test :: Applicative m => m (a, b, c)
test = do
  a <- f
  b <- g
  c <- h
  return (a, b, c)

Which is equivalent to the traditional notation.

test :: Applicative m => m (a, b, c)
test = (,,) <$> f <*> g <*> h

PatternGuards

Pattern guards are an extension to the pattern matching syntax. Given a <- pattern qualifier, the right hand side is evaluated and matched against the pattern on the left. If the match fails then the whole guard fails and the next equation is tried. If it succeeds, then the appropriate binding takes place, and the next qualifier is matched.

{-# LANGUAGE PatternGuards #-}

combine env x y
   | Just a <- lookup x env
   , Just b <- lookup y env
   = Just $ a + b

   | otherwise = Nothing

ViewPatterns

View patterns are like pattern guards that can be nested inside of other patterns. They are a convenient way of pattern-matching against values of algebraic data types.

{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Safe

lookupDefault :: Eq a => a -> b -> [(a,b)] -> b
lookupDefault k _ (lookup k -> Just s) = s
lookupDefault _ d _ = d

headTup :: (a, [t]) -> [t]
headTup (headMay . snd -> Just n) = [n]
headTup _ = []

headNil :: [a] -> [a]
headNil (headMay -> Just x) = [x]
headNil _ = []

TupleSections

The TupleSections syntax extension allows tuples to be constructed similar to how operator sections. With this extension enabled, tuples of arbitrary size can be “partially” specified with commas and values given for specific positions in the tuple. For example for a 2-tuple:

{-# LANGUAGE TupleSections #-}

first :: a -> (a, Bool)
first = (,True)

second :: a -> (Bool, a)
second = (True,)

An example for a 7-tuple where three values are specified in the section.

f :: t -> t1 -> t2 -> t3 -> (t, (), t1, (), (), t2, t3)
f = (,(),,(),(),,)

Postfix Operators

The postfix operators extensions allows user-defined operators that are placed after expressions. For example, using this extension, we could define a postfix factorial function.

{-# LANGUAGE PostfixOperators #-}

(!) :: Integer -> Integer
(!) n = product [1..n]

example :: Integer
example = (52!)

MultiWayIf

Multi-way if expands traditional if statements to allow pattern match conditions that are equivalent to a chain of if-then-else statements. This allows us to write “pattern matching predicates” on a value. This alters the syntax of Haskell language.

{-# LANGUAGE MultiWayIf #-}

bmiTell :: Float -> Text
bmiTell bmi = if
  | bmi <= 18.5 -> "Underweight."
  | bmi <= 25.0 -> "Average weight."
  | bmi <= 30.0 -> "Overweight."
  | otherwise   -> "Clinically overweight."

EmptyCase

GHC normally requires at least one pattern branch in a case statement; this restriction can be relaxed with the EmptyCase language extension. The case statement then immediately yields a Non-exhaustive patterns in case if evaluated. For example, the following will compile using this language pragma:

test = case of

LambdaCase

For case statements, the language extension LambdaCase allows the elimination of redundant free variables introduced purely for the case of pattern matching on.

Without LambdaCase:

\temp -> case temp of
  p1 -> 32
  p2 -> 32

With LambdaCase:

\case
  p1 -> 32
  p2 -> 32
{-# LANGUAGE LambdaCase #-}

data Exp a
  = Lam a (Exp a)
  | Var a
  | App (Exp a) (Exp a)

example :: Exp a -> a
example = \case
  Lam a b -> a
  Var a   -> a
  App a b -> example a

NumDecimals

The extension NumDecimals allows the use of exponential notation for integral literals that are not necessarily floats. Without it, any use of exponential notation induces a Fractional class constraint.

googol :: Fractional a => a
googol = 1e100
{-# LANGUAGE NumDecimals #-}
googol :: Num a => a
googol = 1e100

PackageImports

The syntax language extension PackageImports allows us to disambiguate hierarchical package names by their respective package key. This is useful in the case where you have two imported packages that expose the same module. In practice most of the common libraries have taken care to avoid conflicts in the namespace and this is not usually a problem in most modern Haskell.

For example we could explicitly ask GHC to resolve that Control.Monad.Error package be drawn from the mtl library.

import qualified "mtl" Control.Monad.Error as Error
import qualified "mtl" Control.Monad.State as State
import qualified "mtl" Control.Monad.Reader as Reader

RecordWildCards

Record wild cards allow us to expand out the names of a record as variables scoped as the labels of the record implicitly. The extension can be used to extract variables names into a scope and/or to assign to variables in a record drawing(?), aligning the record’s labels with the variables in scope for the assignment. The syntax introduced is the {..} pattern selector as in the following example:

{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Text

data  Example = Example
  { e1 :: Int
  , e2 :: Text
  , e3 :: Text
  } deriving (Show)

-- Extracting from a record using wildcards.
scope :: Example -> (Int, Text, Text)
scope Example {..} = (e1, e2, e3)

-- Assign to a record using wildcards.
assign :: Example
assign = Example {..}
  where
    (e1, e2, e3) = (1, "Kirk", "Picard")

NamedFieldPuns

NamedFieldPuns provides alternative syntax for accessing record fields in a pattern match.

data D = D {a :: Int, b :: Int}

f :: D -> Int
f D {a, b} = a - b

-- Order doesn't matter
g :: D -> Int
g D {b, a} = a - b

PatternSynonyms

Suppose we were writing a typechecker, and we needed to parse type signatures. One common solution would to include a TArr to pattern match on type function signatures. Even though, technically it could be written in terms of more basic application of the (->) constructor.

data Type
  = TVar TVar
  | TCon TyCon
  | TApp Type Type
  | TArr Type Type
  deriving (Show, Eq, Ord)

With pattern synonyms we can eliminate the extraneous constructor without losing the convenience of pattern matching on arrow types. We introduce a new pattern using the pattern keyword.

{-# LANGUAGE PatternSynonyms #-}

pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

So now we can write a deconstructor and constructor for the arrow type very naturally.

{-# LANGUAGE PatternSynonyms #-}

import Data.List (foldl1')

type Name  = String
type TVar  = String
type TyCon = String

data Type
  = TVar TVar
  | TCon TyCon
  | TApp Type Type
  deriving (Show, Eq, Ord)


pattern TArr t1 t2 = TApp (TApp (TCon "(->)") t1) t2

tapp :: TyCon -> [Type] -> Type
tapp tcon args = foldl TApp (TCon tcon) args

arr :: [Type] -> Type
arr ts = foldl1' (\t1 t2 -> tapp "(->)" [t1, t2]) ts

elimTArr :: Type -> [Type]
elimTArr (TArr (TArr t1 t2) t3) = t1 : t2 : elimTArr t3
elimTArr (TArr t1 t2) = t1 : elimTArr t2
elimTArr t = [t]

-- (->) a ((->) b a)
-- a -> b -> a
to :: Type
to = arr [TVar "a", TVar "b", TVar "a"]

from :: [Type]
from = elimTArr to

Pattern synonyms can be exported from a module like any other definition by prefixing them with the prefix pattern.

module MyModule (
  pattern Elt
) where

pattern Elt = [a]

DeriveFunctor

Many instances of functors over datatypes with parameters and trivial constructors are the result of trivially applying a function over the single constructor’s argument. GHC can derive this boilerplate automatically in deriving clauses if DeriveFunctor is enabled.

{-# LANGUAGE DeriveFunctor #-}

data Tree a = Node a [Tree a]
  deriving (Show, Functor)

tree :: Tree Int
tree = fmap (+1) (Node 1 [Node 2 [], Node 3 []])

DeriveFoldable

Similar to how Functors can be automatically derived, many instances of Foldable for types of kind * -> * have instances that derive the functions:

For instance if we have a custom rose tree and binary tree implementation we can automatically derive the fold functions for these datatypes automatically for us.

{-# LANGUAGE DeriveFoldable #-}

data RoseTree a
  = RoseTree a [RoseTree a]
  deriving (Foldable)

data Tree a
  = Leaf a
  | Branch (Tree a) (Tree a)
  deriving (Foldable)

These will generate the following instances:

instance Foldable RoseTree where
  foldr f z (RoseTree a1 a2)
    = f a1 ((\ b3 b4 -> foldr (\ b1 b2 -> foldr f b2 b1) b4 b3) a2 z)
  foldMap f (RoseTree a1 a2)
    = mappend (f a1) (foldMap (foldMap f) a2)
  null (RoseTree _ _) = False

instance Foldable Tree where
  foldr f z (Leaf a1) = f a1 z
  foldr f z (Branch a1 a2)
    = (\ b1 b2 -> foldr f b2 b1) a1 ((\ b3 b4 -> foldr f b4 b3) a2 z)
  foldMap f (Leaf a1) = f a1
  foldMap f (Branch a1 a2) = mappend (foldMap f a1) (foldMap f a2)
  null (Leaf _) = False
  null (Branch a1 a2) = (&&) (null a1) (null a2)

DeriveTraversable

Just as with Functor and Foldable, many Traversable instances for single-paramater datatypes of kind * -> * have trivial implementations of the traverse function which can also be derived automatically. By enabling DeriveTraversable we can use stock deriving to derive these instances for us.

{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE PartialTypeSignatures #-}


data Tree a = Node a [Tree a]
  deriving (Show, Functor, Foldable, Traversable)

tree :: Maybe [Int]
tree = foldMap go (Node [1] [Node [2] [], Node [3,4] []])
  where
    go [] = Nothing
    go xs = Just xs

DeriveGeneric

Data types in Haskell can derived by GHC with the DeriveGenerics extension which is able to define the entire structure of the Generic instance and associated type families. See Generics for more details on what these types mean.

For example the simple custom List type deriving Generic:

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics

data List a
  = Cons a (List a)
  | Nil deriving
  (Generic)

Will generate the following Generic instance:

instance Generic (List a) where
  type
    Rep (List a) =
      D1
        ('MetaData "List" "Ghci3" "MyModule" 'False)
        ( C1
            ('MetaCons "Cons" 'PrefixI 'False)
            ( S1
                ( 'MetaSel
                    'Nothing
                    'NoSourceUnpackedness
                    'NoSourceStrictness
                    'DecidedLazy
                )
                (Rec0 a)
                :*: S1
                      ( 'MetaSel
                          'Nothing
                          'NoSourceUnpackedness
                          'NoSourceStrictness
                          'DecidedLazy
                      )
                      (Rec0 (List a))
            )
            :+: C1 ('MetaCons "Nil" 'PrefixI 'False) U1
        )
  from x = M1
      ( case x of
          Cons g1 g2 -> L1 (M1 ((:*:) (M1 (K1 g1)) (M1 (K1 g2))))
          Nil -> R1 (M1 U1)
      )
  to (M1 x) = case x of
      (L1 (M1 ((:*:) (M1 (K1 g1)) (M1 (K1 g2))))) -> Cons g1 g2
      (R1 (M1 U1)) -> Nil

DeriveAnyClass

With -XDeriveAnyClass we can derive any class. The deriving logic generates an instance declaration for the type with no explicitly-defined methods or with all instances having a specific default implementation given. These are used extensively with Generics when instances provide empty Minimal Annotations which are all derived from generic logic.

A contrived example of a class with an empty minimal set might be the following:

{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE DeriveAnyClass #-}

class MinimalClass a where
  const1 :: a -> Int
  default const1 :: a -> Int
  const1 _ = 1

  const2 :: a -> Int
  default const2 :: a -> Int
  const2 _ = 2

data Example = Example
  deriving (MinimalClass)

main :: IO ()
main = do
  print (const1 Example)
  print (const2 Example)

DuplicateRecordFields

GHC 8.0 introduced the DuplicateRecordFields extensions which loosens GHC’s restriction on records in the same module with identical accessors. The precise type that is being projected into is now deferred to the callsite.

{-# LANGUAGE DuplicateRecordFields #-}

data Person = Person { id :: Int }
data Animal = Animal { id :: Int }
data Vegetable = Vegetable { id :: Int }

test :: (Person, Animal, Vegetable)
test = (Person {id = 1}, Animal {id = 2}, Vegetable {id = 3})

Using just DuplicateRecordFields, projection is still not supported so the following will not work.

test :: (Int, Int, Int)
test = (id (Person 1), id (Animal 2), id (Animal 3))

OverloadedLabels

GHC 8.0 also introduced the OverloadedLabels extension which allows a limited form of polymorphism over labels that share the same name.

To work with overloaded label types we also need to enable several language extensions that allow us to use the promoted strings and multiparam typeclasses that underlay its implementation.

extract :: IsLabel "id" t => t
extract = #id
{-# LANGUAGE OverloadedLabels #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE ExistentialQuantification #-}

import GHC.Records (HasField(..))  -- Since base 4.10.0.0
import GHC.OverloadedLabels (IsLabel(..))

data S = MkS { foo :: Int }
data T x y z = forall b . MkT { foo :: y, bar :: b }

instance HasField x r a => IsLabel x (r -> a) where
  fromLabel = getField

main :: IO ()
main = do
  print (#foo (MkS 42))
  print (#foo (MkT True False))

This is used in more advanced libraries like Selda which do object relational mapping between Haskell datatype fields and database columns.

See:

CPP

The C++ preprocessor is the fallback whenever we really need to separate out logic that has to span multiple versions of GHC and language changes while maintaining backwards compatibility. It can dispatch on the version of GHC being used to compile a module.

{-# LANGUAGE CPP #-}

#if (__GLASGOW_HASKELL__ > 710)
-- Imports for GHC 7.10.x
#else
-- Imports for other GHC
#endif

It can also demarcate code based on the operating system compiled on.

{-# LANGUAGE CPP #-}

#ifdef OS_Linux
  -- Linux specific logic
#else
# ifdef OS_Win32
  -- Windows specific logic
# else
# ifdef OS_Mac
  -- Mac specific logic
# else
  -- Other operating systems
# endif
# endif
#endif

For another example, it can distinguish the version of the base library used.

#if !MIN_VERSION_base(4,6,0)
  -- Base specific logic
#endif

One can also use the CPP extension to emit Haskell source at compile-time. This is used in some libraries which have massive boilerplate obligations. Of course, this can be abused quite easily and doing this sort of compile-time string-munging should be a last resort.

TypeApplications

The type system extension TypeApplications allows you to use explicit annotations for subexpressions. For example if you have a subexpression which has the inferred type a -> b -> a you can name the types of a and b by explicitly stating @Int @Bool to assign a to Int and b to Bool. This is particularly useful when working with typeclasses where type inference cannot deduce the types of all subexpressions from the toplevel signature and results in an overly specific default. This is quite common when working with roundtrips of read and show. For example:

{-# LANGUAGE TypeApplications #-}

import Data.Proxy

a :: Proxy Int
a = Proxy @Int

b :: String
b = show (read @Int "42")

DerivingVia

DerivingVia is an extension of GeneralizedNewtypeDeriving. Just as newtype deriving allows us to derive instances in terms of instances for the underlying representation of the newtype, DerivingVia allows deriving instances by specifying a custom type which has a runtime representation equal to the desired behavior we’re deriving the instance for. The derived instance can then be coerced to behave as if it were operating over the given type. This is a powerful new mechanism that allows us to derive many typeclasses in terms of other typeclasses.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE KindSignatures #-}

import Control.Applicative
import Data.Functor.Const (Const (..))
import GHC.Exts (Any)

-- Deriving Eq in terms of Const functor
newtype Age = MkAge Int
  deriving
    (Eq)
    via Const Int Any

-- Deriving Num across a nested functor
newtype FNum f a = FNum (f a)
  deriving stock (Functor)
  deriving newtype (Applicative)

instance (Applicative f, Num a) => Num (FNum f a) where
  (+) = liftA2 (+)
  (-) = liftA2 (-)
  (*) = liftA2 (*)
  abs = fmap abs
  signum = fmap signum
  fromInteger = FNum . pure . fromInteger

newtype Example a b = Example (Either a b)
  deriving stock (Show, Functor)
  deriving newtype (Applicative)
  deriving (Num) via FNum (Either a) b

a :: Example Integer Integer
a = Example (Left 1)

b :: Example Integer Integer
b = Example (Right 1)

example :: IO ()
example = do
  print (a + a)
  print (a + b)
  print (b + b)

DerivingStrategies

Deriving has proven a powerful mechanism to add typeclass instances and as such there have been a variety of bifurcations in its use. Since GHC 8.2 there are now four different algorithms that can be used to derive typeclass instances. These are enabled by different extensions and now have specific syntax for invoking each algorithm specifically. Turning on DerivingStrategies allows you to disambiguate which algorithm GHC should use for individual class derivations.

These can be stacked and combined on top of a data or newtype declaration.

newtype Example = Example Int
  deriving stock    (Read, Show)
  deriving newtype  (Num, Floating)
  deriving anyclass (ToJSON, FromJSON, ToSQL, FromSQL)
  deriving (Eq) via (Const Int Any)

Historical Extensions

Several language extensions have either been absorbed into the core language or become deprecated in favor of others. Others are just considered misfeatures.


Type Class Extensions

Typeclasses are the bread and butter of abstractions in Haskell, and even out of the box in Haskell 98 they are quite powerful. However classes have grown quite a few extensions, additional syntax and enhancements over the years to augment their utility.

--        +-----+------------------ Typeclass Context
--        |     |           +------ Typeclass Head
--        |     |           |
--    ^^^^^^^^^^^^^^^     ^^^^^^^^^^^
class (Ctx1 a, Ctx2 b) => MyClass a b where
  method1 :: a -> b
--        |
--        +------------------------ Typeclass Method

Standard Hierarchy

In the course of writing Haskell there are seven core instances you will use and derive most frequently. Each of them are lawful classes with several equations associated with their methods.

Whenever a typeclass method is invoked at a callsite, GHC will perform an instance search over all available instances defined for the given typeclass associated with the method. This instance search is quite similar to backward chaining in logic programming languages. The search is performed during compilation after all types in all modules are known and is performed globally across all modules and all packages available to be linked. The instance search can either result in no instances, a single instance or multiple instances which satisfy the conditions of the call site.

Orphan Instances

Normally typeclass definitions are restricted to be defined in one of two places:

  1. In the same module as the declaration of the datatype in the instance head.
  2. In the same module as the class declaration.

These two restrictions restrict the instance search space to a system where a solution (if it exists) can always be found. If we allowed instances to be defined in any modules then we could potentially have multiple class instances defined in multiple modules and the search would be ambiguous.

This restriction can however be disabled with the -fno-warn-orphans flag.

{-# OPTIONS_GHC -fno-warn-orphans #-}

This will allow you to define orphan instances in the current module. But beware this will make the instance search contingent on your import list and may result in clashes in your codebase where the linker will fail because there are multiple modules which define the same instance head.

When used appropriately this can be the way to route around the fact that upstream modules may define datatypes that you use, but they have not defined the instances for other downstream libraries that you also use. You can then write these instances for your codebase without modifying either upstream library.

Minimal Annotations

In the presence of default implementations for typeclass methods, there may be several ways to implement a typeclass. For instance Eq is entirely defined by either defining when two values are equal or not equal by implying taking the negation of the other. We can define equality in terms of non-equality and vice-versa.

class Eq a where
  (==), (/=) :: a -> a -> Bool
  x == y = not (x /= y)
  x /= y = not (x == y)

Before 7.6.1 there was no way to specify what was the “minimal” definition required to implement a typeclass

class Eq a where
  (==), (/=) :: a -> a -> Bool
  x == y = not (x /= y)
  x /= y = not (x == y)
  {-# MINIMAL (==) #-}
  {-# MINIMAL (/=) #-}

Minimal pragmas are boolean expressions. For instance, with | as logical OR, either definition of the above functions must be defined. Comma indicates logical AND where both definitions must be defined.

{-# MINIMAL (==) | (/=) #-} -- Either (==) or (/=)
{-# MINIMAL (==) , (/=) #-} -- Both (==) and (/=)

Compiling the -Wmissing-methods will warn when an instance is defined that does not meet the minimal criterion.

TypeSynonymInstances

Normally type class definitions are restricted to being defined only over fully expanded types with all type synonym indirections removed. Type synonyms introduce a “naming indirection” that can be included in the instance search to allow you to write synonym instances for multiple synonyms which expand to concrete types.

This is used quite often in modern Haskell.

{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}

type IntList = [Int]

class MyClass a

-- Without type synonym instances, we're forced to manually expand out type
-- synonyms in the typeclass head.
instance MyClass [Int]

-- With it GHC will do this for us automatically. Type synonyms still need to
-- be fully applied.
instance MyClass IntList

FlexibleInstances

Normally the head of a typeclass instance must contain only a type constructor applied to any number of type variables. There can be no nesting of other constructors or non-type variables in the head. The FlexibleInstances extension loosens this restriction to allow arbitrary nesting and non-type variables to be mentioned in the head definition. This extension also implicitly enables TypeSynonymInstances.

{-# LANGUAGE FlexibleInstances #-}

class MyClass a

-- Without flexible instances, all instance heads must be type variable. The
-- following would be legal.
instance MyClass (Maybe a)

-- With flexible instances, typeclass heads can be arbitrary nested types. The
-- following would be forbidden without it.
instance MyClass (Maybe Int)

FlexibleContexts

Just as with instances, contexts normally are also constrained to consist entirely of constraints where a class is applied to just type variables. The FlexibleContexts extension lifts this restriction and allows any type of type variable and nesting to occur the class constraint head. There is however still a global restriction that all class hierarchies must not contain cycles.

{-# LANGUAGE FlexibleContexts #-}

class MyClass a

-- Without flexible contexts, all contexts must be type variable. The
-- following would be legal.
instance (MyClass a) => MyClass (Either a b)

-- With flexible contexts, typeclass contexts can be arbitrary nested types. The
-- following would be forbidden without it.
instance (MyClass (Maybe a)) => MyClass (Either a b)

OverlappingInstances

Typeclasses are normally globally coherent, there is only ever one instance that can be resolved for a type unambiguously at any call site in the program. There are however extensions to loosen this restriction and perform more manual direction of the instance search.

Overlapping instances loosens the coherent condition (there can be multiple instances) but introduces a criterion that it will resolve to the most specific one.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE OverlappingInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
  fn :: (a,b)

instance MyClass Int b where
  fn = error "b"

instance MyClass a Int where
  fn = error "a"

instance MyClass Int Int where
  fn = error "c"

example :: (Int, Int)
example = fn

Historically enabling on the module-level was not the best idea, since generally we define multiple classes in a module only a subset of which may be incoherent. As of GHC 7.10 we now have the capacity to just annotate instances with the OVERLAPPING and INCOHERENT inline pragmas.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
  fn :: (a,b)

instance {-# OVERLAPPING #-} MyClass Int b where
  fn = error "b"

instance {-# OVERLAPPING #-} MyClass a Int where
  fn = error "a"

instance {-# OVERLAPPING #-} MyClass Int Int where
  fn = error "c"

example :: (Int, Int)
example = fn

IncoherentInstances

Incoherent instances loosens the restriction that there be only one specific instance, it will be chosen based on a more complex search procedure which tries to identify a prime instance based on information incorporated form OVERLAPPING pragmas on instances in the search tree. Unless one is doing very advanced type-level programming use class constraints, this is usually a poor design decision and a sign to rethink the class hierarchy.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE IncoherentInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
  fn :: (a,b)

instance MyClass Int b where
  fn = error "a"

instance MyClass a Int where
  fn = error "b"

example :: (Int, Int)
example = fn

An example with INCOHERENT annotations:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

class MyClass a b where
  fn :: (a,b)

instance {-# INCOHERENT #-} MyClass a Int where
  fn = error "general"

instance {-# INCOHERENT #-} MyClass Int Int where
  fn = error "specific"

example :: (Int, Int)
example = fn

Laziness

Haskell is a unique language that explores an alternative evaluation model called lazy evaluation. Lazy evaluation implies that expressions will be evaluated only when needed. In truth, this evaluation may even be indefinitely deferred. Consider the example in Haskell of defining an infinite list:

λ> mkInfinite n = n : mkInfinite n
λ> take 5 $ mkInfinite 4
[4,4,4,4,4]

The primary advantage of lazy evaluation in the large is that algorithms that operate over both unbounded and bounded data structures can inhabit the same type signatures and be composed without any additional need to restructure their logic or force intermediate computations.

Still, it’s important to recognize that this is another subject on which much ink has been spilled. In fact, there is an ongoing discussion in the land of Haskell about the compromises between lazy and strict evaluation, and there are nuanced arguments for having either paradigm be the default.

Haskell takes a hybrid approach where it allows strict evaluation when needed while it uses laziness by default. Needless to say, we can always find examples where strict evaluation exhibits worse behavior than lazy evaluation and vice versa. These days Haskell can be both as lazy or as strict as you like, giving you options for however you prefer to program.

Languages that attempt to bolt laziness on to a strict evaluation model often bifurcate classes of algorithms into ones that are hand-adjusted to consume unbounded structures and those which operate over bounded structures. In strict languages, mixing and matching between lazy vs. strict processing often necessitates manifesting large intermediate structures in memory when such composition would “just work” in a lazy language.

By virtue of Haskell being the only language to actually explore this point in the design space, knowledge about lazy evaluation is not widely absorbed into the collective programmer consciousness and can often be non-intuitive to the novice. Some time is often needed to fully grok how lazy evaluation works

Strictness

For a more strict definition of strictnees, consider that there are several evaluation models for the lambda calculus:

These ideas give rise to several models, Haskell itself uses the call-by-need model.

Model Strictness Description
Call-by-value Strict Arguments evaluated before function entered
Call-by-name Non-strict Arguments passed unevaluated
Call-by-need Non-strict Arguments passed unevaluated but an expression is only evaluated once

Seq and WHNF

On the subject of laziness and evaluation, we have names for how fully evaluated an expression is. A term is said to be in weak head normal-form if the outermost constructor or lambda expression cannot be reduced further. A term is said to be in normal form if it is fully evaluated and all sub-expressions and thunks contained within are evaluated.

-- In Normal Form
42
(2, "foo")
\x -> x + 1

-- Not in Normal Form
1 + 2
(\x -> x + 1) 2
"foo" ++ "bar"
(1 + 1, "foo")

-- In Weak Head Normal Form
(1 + 1, "foo")
\x -> 2 + 2
'f' : ("oo" ++ "bar")

-- Not In Weak Head Normal Form
1 + 1
(\x -> x + 1) 2
"foo" ++ "bar"

In Haskell, normal evaluation only occurs at the outer constructor of case-statements in Core. If we pattern match on a list, we don’t implicitly force all values in the list. An element in a data structure is only evaluated up to the outermost constructor. For example, to evaluate the length of a list we need only scrutinize the outer Cons constructors without regard for their inner values:

λ: length [undefined, 1]
2

λ: head [undefined, 1]
Prelude.undefined

λ: snd (undefined, 1)
1

λ: fst (undefined, 1)
Prelude.undefined

For example, in a lazy language the following program terminates even though it contains diverging terms.

ignore :: a -> Int
ignore x = 0

loop :: a
loop = loop

main :: IO ()
main = print $ ignore loop

In a strict language like OCaml (ignoring its suspensions for the moment), the same program diverges.

let ignore x = 0;; 
let rec loop a = loop a;;

print_int (ignore (loop ()));

Thunks

In Haskell a thunk is created to stand for an unevaluated computation. Evaluation of a thunk is called forcing the thunk. The result is an update, a referentially transparent effect, which replaces the memory representation of the thunk with the computed value. The fundamental idea is that a thunk is only updated once (although it may be forced simultaneously in a multi-threaded environment) and its resulting value is shared when referenced subsequently.

The GHCi command :sprint can be used to introspect the state of unevaluated thunks inside an expression without forcing evaluation. For instance:

λ: let a = [1..] :: [Integer]
λ: let b = map (+ 1) a

λ: :sprint a
a = _
λ: :sprint b
b = _
λ: a !! 4
5
λ: :sprint a
a = 1 : 2 : 3 : 4 : 5 : _
λ: b !! 10
12
λ: :sprint a
a = 1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : 11 : _
λ: :sprint b
b = _ : _ : _ : _ : _ : _ : _ : _ : _ : _ : 12 : _

While a thunk is being computed its memory representation is replaced with a special form known as blackhole which indicates that computation is ongoing and allows for a short circuit when a computation might depend on itself to complete.

The seq function introduces an artificial dependence on the evaluation of order of two terms by requiring that the first argument be evaluated to WHNF before the evaluation of the second. The implementation of the seq function is an implementation detail of GHC.

seq :: a -> b -> b

`seq` a =
a `seq` b = b

For one example where laziness can bite you, the infamous foldl is well-known to leak space when used carelessly and without several compiler optimizations applied. The strict foldl’ variant uses seq to overcome this.

foldl :: (a -> b -> a) -> a -> [b] -> a
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
foldl' :: (a -> b -> a) -> a -> [b] -> a
foldl' _ z [] = z
foldl' f z (x:xs) = let z' = f z x in z' `seq` foldl' f z' xs

In practice, a combination between the strictness analyzer and the inliner on -O2 will ensure that the strict variant of foldl is used whenever the function is inlinable at call site so manually using foldl' is most often not required.

Of important note is that GHCi runs without any optimizations applied so the same program that performs poorly in GHCi may not have the same performance characteristics when compiled with GHC.

BangPatterns

The extension BangPatterns allows an alternative syntax to force arguments to functions to be wrapped in seq. A bang operator on an argument forces its evaluation to weak head normal form before performing the pattern match. This can be used to keep specific arguments evaluated throughout recursion instead of creating a giant chain of thunks.

{-# LANGUAGE BangPatterns #-}

sum :: Num a => [a] -> a
sum = go 0
  where
    go !acc (x:xs) = go (acc + x) xs
    go  acc []     = acc

This is desugared into code effectively equivalent to the following:

sum :: Num a => [a] -> a
sum = go 0
  where
    go acc _ | acc `seq` False = undefined
    go acc (x:xs)              = go (acc + x) xs
    go acc []                  = acc

Function application to seq’d arguments is common enough that it has a special operator.

($!) :: (a -> b) -> a -> b
f $! x  = let !vx = x in f vx

StrictData

As of GHC 8.0 strictness annotations can be applied to all definitions in a module automatically. In previous versions to make definitions strict it was necessary to use explicit syntactic annotations at call sites.

Enabling StrictData makes constructor fields strict by default on any module where the pragma is enabled:

{-# LANGUAGE StrictData #-}

data Employee = Employee
  { name :: T.Text
  , age :: Int
  }

Is equivalent to:

data Employee = Employee
  { name :: !T.Text
  , age :: !Int
  }

Strict

Strict implies -XStrictData and extends strictness annotations to all arguments of functions.

f x y = x + y

Is equivalent to the following function declaration with explicit bang patterns:

f !x !y = x + y

On a module-level this effectively makes Haskell a call-by-value language with some caveats. All arguments to functions are now explicitly evaluated and all data in constructors within this module are in head normal form by construction.

Deepseq

There are often times when for performance reasons we need to deeply evaluate a data structure to normal form leaving no terms unevaluated. The deepseq library performs this task.

The typeclass NFData (Normal Form Data) allows us to seq all elements of a structure across any subtypes which themselves implement NFData.

class NFData a where
  rnf :: a -> ()
  rnf a = a `seq` ()

deepseq :: NFData a => a -> b -> b
($!!) :: (NFData a) => (a -> b) -> a -> b
instance NFData Int
instance NFData (a -> b)

instance NFData a => NFData (Maybe a) where
    rnf Nothing  = ()
    rnf (Just x) = rnf x

instance NFData a => NFData [a] where
    rnf [] = ()
    rnf (x:xs) = rnf x `seq` rnf xs
[1, undefined] `seq` ()
-- ()

[1, undefined] `deepseq` ()
-- Prelude.undefined

To force a data structure itself to be fully evaluated we share the same argument in both positions of deepseq.

force :: NFData a => a -> a
force x = x `deepseq` x

Irrefutable Patterns

A lazy pattern doesn’t require a match on the outer constructor, instead it lazily calls the accessors of the values as needed. In the presence of a bottom, we fail at the usage site instead of the outer pattern match.

f :: (a, b) -> Int
f (a,b) = const 1 a

g :: (a, b) -> Int
g ~(a,b) = const 1 a

-- λ: f undefined
-- *** Exception: Prelude.undefined
-- λ: g undefined
-- 1

j :: Maybe t -> t
j ~(Just x) = x

k :: Maybe t -> t
k (Just x) = x

-- λ: j Nothing
-- *** Exception: src/05-laziness/lazy_patterns.hs:15:1-15: Irrefutable pattern failed for pattern (Just x)
--
-- λ: k Nothing
-- *** Exception: src/05-laziness/lazy_patterns.hs:18:1-14: Non-exhaustive patterns in function k

The Debate

Laziness is a controversial design decision in Haskell. It is difficult to write production Haskell code that operates in constant memory without some insight into the evaluation model and the runtime. A lot of industrial codebases have a policy of marking all constructors as strict by default or enabling StrictData to prevent space leaks. If Haskell were being designed from scratch it probably would not choose laziness as the default model. Future implementations of Haskell compilers would not choose this point in the design space if given the option of breaking with the language specification.

There is a lot of fear, uncertainty and doubt spread about lazy evaluation that unfortunately loses the forest for the trees and ignores 30 years of advanced research on the type system. In industrial programming a lot of software is sold on the meme of being of fast instead of being correct, and lazy evaluation is an intellectually easy talking point about these upside-down priorities. Nevertheless the colloquial perception of laziness being “evil” is a meme that will continue to persist regardless of any underlying reality because software is intrinsically a social process.


Prelude

What to Avoid?

Haskell being a 30 year old language has witnessed several revolutions in the way we structure and compose functional programs. Yet as a result several portions of the Prelude still reflect old schools of thought that simply can’t be removed without breaking significant parts of the ecosystem.

Currently it really only exists in folklore which parts to use and which not to use, although this is a topic that almost all introductory books don’t mention and instead make extensive use of the Prelude for simplicity’s sake.

The short version of the advice on the Prelude is:

  • Avoid String.
  • Use fmap instead of map.
  • Use Foldable and Traversable instead of the Control.Monad, and Data.List versions of traversals.
  • Avoid partial functions like head and read or use their total variants.
  • Avoid exceptions, use ExceptT or Either instead.
  • Avoid boolean blind functions.

The instances of Foldable for the list type often conflict with the monomorphic versions in the Prelude which are left in for historical reasons. So oftentimes it is desirable to explicitly mask these functions from implicit import and force the use of Foldable and Traversable instead.

Of course oftentimes one wishes to only use the Prelude explicitly and one can explicitly import it qualified and use the pieces as desired without the implicit import of the whole namespace.

import qualified Prelude as P

What Should be in Prelude

To get work done on industrial projects you probably need the following libraries:

Custom Preludes

The default Prelude can be disabled in its entirety by twiddling the -XNoImplicitPrelude flag which allows us to replace the default import entirely with a custom prelude. Many industrial projects will roll their own Prologue.hs module which replaces the legacy prelude.

{-# LANGUAGE NoImplicitPrelude #-}

For example if we wanted to build up a custom project prelude we could construct a Prologue module and dump the relevant namespaces we want from base into our custom export list. Using the module reexport feature allows us to create an Exports namespace which contains our Prelude’s symbols. Every subsequent module in our project will then have import Prologue as the first import.

module Prologue (
  module Exports,
) where

import Data.Int as Exports
import Data.Tuple as Exports
import Data.Maybe as Exports
import Data.String as Exports
import Data.Foldable as Exports
import Data.Traversable as Exports

import Control.Monad.Trans.Except
  as Exports
  (ExceptT(ExceptT), Except, except, runExcept, runExceptT,
   mapExcept, mapExceptT, withExcept, withExceptT)

Preludes

There are many approaches to custom preludes. The most widely used ones are all available on Hackage.

Different preludes take different approaches to defining what the Haskell standard library should be. Some are interoperable with existing code and others require an “all-in” approach that creates an ecosystem around it. Some projects are more community efforts and others are developed by consulting companies or industrial users wishing to standardise their commercial code.

In Modern Haskell there are many different perspectives on Prelude design and the degree to which more advanced ideas should be used. Which one is right for you is a matter of personal preference and constraints in your company.

Protolude

Protolude is a minimalist Prelude which provides many sensible defaults for writing modern Haskell and is compatible with existing code.

{-# LANGUAGE NoImplicitPrelude #-}

import Protolude

Protolude is one of the more conservative preludes and is developed by the author of this document.

See:

Partial Functions

A partial function is a function which doesn’t terminate and yield a value for all given inputs. Conversely a total function terminates and is always defined for all inputs. As mentioned previously, certain historical parts of the Prelude are full of partial functions.

The difference between partial and total functions is the compiler can’t reason about the runtime safety of partial functions purely from the information specified in the language and as such the proof of safety is left to the user to guarantee. They are safe to use in the case where the user can guarantee that invalid inputs cannot occur, but like any unchecked property its safety or not-safety is going to depend on the diligence of the programmer. This very much goes against the overall philosophy of Haskell and as such they are discouraged when not necessary.

head :: [a] -> a
read :: Read a => String -> a
(!!) :: [a] -> Int -> a

A list of partial functions in the default prelude:

Partial for all inputs

Partial for empty lists

Partial for Nothing

Partial for invalid strings lists

Partial for infinite lists

Partial for negative or unbounded numbers

Replacing Partiality

The Prelude has total variants of the historical partial functions (e.g. Text.Read.readMaybe) in some cases, but often these are found in the various replacement preludes

The total versions provided fall into three cases:

-- Total
headMay :: [a] -> Maybe a
readMay :: Read a => String -> Maybe a
atMay :: [a] -> Int -> Maybe a

-- Total
headDef :: a -> [a] -> a
readDef :: Read a => a -> String -> a
atDef   :: a -> [a] -> Int -> a

-- Partial
headNote :: String -> [a] -> a
readNote :: Read a => String -> String -> a
atNote   :: String -> [a] -> Int -> a

Boolean Blindness

Boolean blindness is a common problem found in many programming languages. Consider the following two definitions which deconstruct a Maybe value into a boolean. Is there anything wrong with the definitions and below and why is this not caught in the type system?

data Bool = True | False

isNotJust :: Maybe a -> Bool
isNotJust (Just x) = True -- ???
isNotJust Nothing = False

isJust :: Maybe a -> Bool
isJust (Just x) = True
isJust Nothing  = False

The problem with the Bool type is that there is effectively no difference between True and False at the type level. A proposition taking a value to a Bool takes any information given and destroys it. To reason about the behavior we have to trace the provenance of the proposition we’re getting the boolean answer from, and this introduces a whole slew of possibilities for misinterpretation. In the worst case, the only way to reason about safe and unsafe use of a function is by trusting that a predicate’s lexical name reflects its provenance!

For instance, testing some proposition over a Bool value representing whether the branch can perform the computation safely in the presence of a null is subject to accidental interchange. Consider that in a language like C or Python testing whether a value is null is indistinguishable to the language from testing whether the value is not null. Which of these programs encodes safe usage and which segfaults?

# This one?
if p(x):
    # use x
elif not p(x):
    # don't use x

# Or this one?
if p(x):
    # don't use x
elif not p(x):
    # use x

From inspection we can’t tell without knowing how p is defined, the compiler can’t distinguish the two either and thus the language won’t save us if we happen to mix them up. Instead of making invalid states unrepresentable we’ve made the invalid state indistinguishable from the valid one!

The more desirable practice is to match on terms which explicitly witness the proposition as a type (often in a sum type) and won’t typecheck otherwise.

case x of
  Just a  -> use x
  Nothing -> don't use x

-- not ideal
case p x of
  True  -> use x
  False -> don't use x

-- not ideal
if p x
  then use x
  else don't use x

To be fair though, many popular languages completely lack the notion of sum types (the source of many woes in my opinion) and only have product types, so this type of reasoning sometimes has no direct equivalence for those not familiar with ML family languages.

In Haskell, the Prelude provides functions like isJust and fromJust both of which can be used to subvert this kind of reasoning and make it easy to introduce bugs and should often be avoided.

Foldable / Traversable

If coming from an imperative background retraining oneself to think about iteration over lists in terms of maps, folds, and scans can be challenging.

Prelude.foldl :: (a -> b -> a) -> a -> [b] -> a
Prelude.foldr :: (a -> b -> b) -> b -> [a] -> b

-- pseudocode
foldr f z [a...] = f a (f b ( ... (f y z) ... ))
foldl f z [a...] = f ... (f (f z a) b) ... y

For a concrete example consider the simple arithmetic sequence over the binary operator (+):

-- foldr (+) 1 [2..]
(2 + (3 + (4 + (5 + ...))))
-- foldl (+) 1 [2..]
((((1 + 2) + 3) + 4) + ...)

Foldable and Traversable are the general interface for all traversals and folds of any data structure which is parameterized over its element type ( List, Map, Set, Maybe, …). These two classes are used everywhere in modern Haskell and are extremely important.

class Foldable t where
  fold    :: Monoid m => t m -> m
  foldMap :: Monoid m => (a -> m) -> t a -> m
  foldr   :: (a -> b -> b) -> b -> t a -> b
  foldr'  :: (a -> b -> b) -> b -> t a -> b
  foldl   :: (b -> a -> b) -> b -> t a -> b
  foldl'  :: (b -> a -> b) -> b -> t a -> b
  foldr1  :: (a -> a -> a) -> t a -> a
  foldl1  :: (a -> a -> a) -> t a -> a
  toList  :: t a -> [a]
  null    :: t a -> Bool
  length  :: t a -> Int
  elem    :: Eq a => a -> t a -> Bool
  maximum :: Ord a => t a -> a
  minimum :: Ord a => t a -> a
  sum     :: Num a => t a -> a
  product :: Num a => t a -> a

A foldable instance allows us to apply functions to data types of monoidal values that collapse the structure using some logic over mappend.

A traversable instance allows us to apply functions to data types that walk the structure left-to-right within an applicative context.

class (Functor f, Foldable f) => Traversable f where
  traverse :: Applicative g => (a -> g b) -> f a -> g (f b)

class Foldable f where
  foldMap :: Monoid m => (a -> m) -> f a -> m

The foldMap function is extremely general and non-intuitively many of the monomorphic list folds can themselves be written in terms of this single polymorphic function.

foldMap takes a function of values to a monoidal quantity, a functor over the values and collapses the functor into the monoid. For instance for the trivial Sum monoid:

λ: foldMap Sum [1..10]
Sum {getSum = 55}

For instance if we wanted to map a list of some abstract element types into a hashtable of elements based on pattern matching we could use it.

import Data.Foldable
import qualified Data.Map as Map

data Elt
  = Elt Int Double
  | Nil

foo :: [Elt] -> Map.Map Int Double
foo = foldMap go
  where
    go (Elt x y) = Map.singleton x y
    go Nil = Map.empty

The full Foldable class (with all default implementations) contains a variety of derived functions which themselves can be written in terms of foldMap and Endo.

newtype Endo a = Endo {appEndo :: a -> a}

instance Monoid (Endo a) where
  mempty = Endo id
  Endo f `mappend` Endo g = Endo (f . g)

For example:

foldr :: (a -> b -> b) -> b -> t a -> b
foldr f z t = appEndo (foldMap (Endo . f) t) z

Most of the operations over lists can be generalized in terms of combinations of Foldable and Traversable to derive more general functions that work over all data structures implementing Foldable.

Data.Foldable.elem    :: (Eq a, Foldable t) => a -> t a -> Bool
Data.Foldable.sum     :: (Num a, Foldable t) => t a -> a
Data.Foldable.minimum :: (Ord a, Foldable t) => t a -> a
Data.Traversable.mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b)

Unfortunately for historical reasons the names exported by Foldable quite often conflict with ones defined in the Prelude, either import them qualified or just disable the Prelude. The operations in the Foldable class all specialize to the same and behave the same as the ones in Prelude for List types.

import Control.Applicative
import Control.Monad.Identity (runIdentity)
import Data.Foldable
import Data.Monoid
import Data.Traversable
import Prelude hiding (foldr, mapM_)

-- Rose Tree
data Tree a = Node a [Tree a] deriving (Show)

instance Functor Tree where
  fmap f (Node x ts) = Node (f x) (fmap (fmap f) ts)

instance Traversable Tree where
  traverse f (Node x ts) = Node <$> f x <*> traverse (traverse f) ts

instance Foldable Tree where
  foldMap f (Node x ts) = f x `mappend` foldMap (foldMap f) ts

tree :: Tree Integer
tree = Node 1 [Node 1 [], Node 2 [], Node 3 []]

example1 :: IO ()
example1 = mapM_ print tree

example2 :: Integer
example2 = foldr (+) 0 tree

example3 :: Maybe (Tree Integer)
example3 = traverse (\x -> if x > 2 then Just x else Nothing) tree

example4 :: Tree Integer
example4 = runIdentity $ traverse (\x -> pure (x + 1)) tree

The instances we defined above can also be automatically derived by GHC using several language extensions. The automatic instances are identical to the hand-written versions above.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}

data Tree a = Node a [Tree a]
  deriving (Show, Functor, Foldable, Traversable)

Strings

The string situation in Haskell is a sad affair. The default String type is defined as linked list of pointers to characters which is an extremely pathological and inefficient way of representing textual data. Unfortunately for historical reasons large portions of GHC and Base depend on String.

The String problem is intrinsically linked to the fact that the default GHC Prelude provides a set of broken defaults that are difficult to change because GHC and the entire ecosystem historically depend on it. There are however high performance string libraries that can swapped in for the broken String type and we will discuss some ways of working with high-performance and memory efficient replacements.

String

The default Haskell string type is implemented as a naive linked list of characters, this is hilariously terrible for most purposes but no one knows how to fix it without rewriting large portions of all code that exists, and simply nobody wants to commit the time to fix it. So it remains broken, likely forever.

type String = [Char]

However, fear not as there are are two replacement libraries for processing textual data: text and bytestring.

For each of these there are two variants for both text and bytestring.

Giving rise to the Cartesian product of the four common string types:

Variant Module
strict text Data.Text
lazy text Data.Text.Lazy
strict bytestring Data.ByteString
lazy bytestring Data.ByteString.Lazy

String Conversions

Conversions between strings types are done with several functions across the bytestring and text libraries. The mapping between text and bytestring is inherently lossy so there is some degree of freedom in choosing the encoding. We’ll just consider utf-8 for simplicity.

From : left column, To : top row
Data.Text Data.Text.Lazy Data.ByteString Data.ByteString.Lazy
Data.Text id fromStrict encodeUtf8 encodeUtf8
Data.Text.Lazy toStrict id encodeUtf8 encodeUtf8
Data.ByteString decodeUtf8 decodeUtf8 id fromStrict
Data.ByteString.Lazy decodeUtf8 decodeUtf8 toStrict id

Be careful with the functions (decodeUtf8, decodeUtf16LE, etc.) as they are partial and will throw errors if the byte array given does not contain unicode code points. Instead use one of the following functions which will allow you to explicitly handle the error case:

decodeUtf8' :: ByteString -> Either UnicodeException Text
decodeUtf8With :: OnDecodeError -> ByteString -> Text

OverloadedStrings

With the -XOverloadedStrings extension string literals can be overloaded without the need for explicit packing and can be written as string literals in the Haskell source and overloaded via the typeclass IsString. Sometimes this is desirable.

class IsString a where
  fromString :: String -> a

For instance:

λ: :type "foo"
"foo" :: [Char]

λ: :set -XOverloadedStrings

λ: :type "foo"
"foo" :: IsString a => a

We can also derive IsString for newtypes using GeneralizedNewtypeDeriving, although much of the safety of the newtype is then lost if it is used interchangeable with other strings.

newtype Cat = Cat Text
  deriving (IsString)

fluffy :: Cat
fluffy = "Fluffy"

Import Conventions

Since there are so many modules that provide string datatypes, and these modules are used ubiquitously, some conventions are often adopted to import these modules as specific agreed-upon qualified names. In many Haskell projects you will see the following social conventions used for distinguish text types.

For datatypes:

import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.ByteString as BS
import qualified Data.ByteString.Lazy as BL
import qualified Data.ByteString.Char8 as C
import qualified Data.ByteString.Lazy.Char8 as CL

For IO operations:

import qualified Data.Text.IO as TIO
import qualified Data.Text.Lazy.IO as TLIO

For encoding operations:

import qualified Data.Text.Encoding as TE
import qualified Data.Text.Lazy.Encoding as TLE

In addition many libraries and alternative preludes will define the following type synonyms:

type LText = TL.Text
type LByteString = BL.ByteString

Text

The Text type is a packed blob of Unicode characters.

pack :: String -> Text
unpack :: Text -> String
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

-- From pack
myTStr1 :: T.Text
myTStr1 = T.pack ("foo" :: String)

-- From overloaded string literal.
myTStr2 :: T.Text
myTStr2 = "bar"

See: Text

Text.Builder

toLazyText :: Builder -> Data.Text.Lazy.Internal.Text
fromLazyText :: Data.Text.Lazy.Internal.Text -> Builder

The Text.Builder allows the efficient monoidal construction of lazy Text types without having to go through inefficient forms like String or List types as intermediates.

{-# LANGUAGE OverloadedStrings #-}

import Data.Monoid (mconcat, (<>))

import Data.Text.Lazy.Builder (Builder, toLazyText)
import Data.Text.Lazy.Builder.Int (decimal)
import qualified Data.Text.Lazy.IO as L

beer :: Int -> Builder
beer n = decimal n <> " bottles of beer on the wall.\n"

wall :: Builder
wall = mconcat $ fmap beer [1..1000]

main :: IO ()
main = L.putStrLn $ toLazyText wall

ByteString

ByteStrings are arrays of unboxed characters with either strict or lazy evaluation.

pack :: String -> ByteString
unpack :: ByteString -> String
{-# LANGUAGE OverloadedStrings #-}

import qualified Data.ByteString as S
import qualified Data.ByteString.Char8 as S8

-- From pack
bstr1 :: S.ByteString
bstr1 = S.pack [102, 111, 111] -- ascii encoding of foo as [Word8]

-- From overloaded string literal.
bstr2 :: S.ByteString
bstr2 = "bar"

Printf

Haskell also has a variadic printf function in the style of C.

import Data.Text
import Text.Printf

a :: Int
a = 3

b :: Double
b = 3.14159

c :: String
c = "haskell"

example :: String
example = printf "(%i, %f, %s)" a b c
-- "(3, 3.14159, haskell)"

Overloaded Lists

It is ubiquitous for data structure libraries to expose toList and fromList functions to construct various structures out of lists. As of GHC 7.8 we now have the ability to overload the list syntax in the surface language with the typeclass IsList.

class IsList l where
  type Item l
  fromList  :: [Item l] -> l
  fromListN :: Int -> [Item l] -> l
  toList    :: l -> [Item l]

instance IsList [a] where
  type Item [a] = a
  fromList = id
  toList   = id
λ: :seti -XOverloadedLists
λ: :type [1,2,3]
[1,2,3] :: (Num (GHC.Exts.Item l), GHC.Exts.IsList l) => l

For example we could write an overloaded list instance for hash tables that simply converts to the hash table using fromList. Some math libraries that use vector-like structures will use overloaded lists in this fashion.

{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE TypeFamilies #-}

import qualified Data.Map as Map
import GHC.Exts (IsList (..))

instance (Ord k) => IsList (Map.Map k v) where
  type Item (Map.Map k v) = (k, v)
  fromList = Map.fromList
  toList = Map.toList

example1 :: Map.Map String Int
example1 = [("a", 1), ("b", 2)]

Regex

regex-tdfa implements POSIX extended regular expressions. These can operate over any of the major string types and with OverloadedStrings enabled allows you to write well-typed regex expressions as strings.

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import Text.Regex.TDFA

-- | Verify url address
url :: Text -> Bool
url input = input =~ urlRegex
  where
    urlRegex :: Text
    urlRegex = "https?:\\/\\/(www\\.)?[-a-zA-Z0-9@:%._\\+~#=]{1,256}\\.[a-zA-Z0-9()]{1,6}\\b([-a-zA-Z0-9()@:%_\\+.~#?&//=]*)"

-- | Verify email address
email :: Text -> Bool
email input = input =~ emailRegex
  where
    emailRegex :: Text
    emailRegex = "[a-zA-Z0-9+._-]+@[a-zA-Z-]+\\.[a-z]+"

Escaping Text

Haskell uses C-style single-character escape codes

Escape Unicode Character
\n U+000A newline
\0 U+0000 null character
\& n/a empty string
\’ U+0027 single quote
\\ U+005C backslash
\a U+0007 alert
\b U+0008 backspace
\f U+000C form feed
\r U+000D carriage return
\t U+0009 horizontal tab
\v U+000B vertical tab
\” U+0022 double quote

String Splitting

The split package provides a variety of missing functions for splitting list and string types.

import Data.List.Split

example1 :: [String]
example1 = splitOn "." "foo.bar.baz"
-- ["foo","bar","baz"]

example2 :: [String]
example2 = chunksOf 10 "To be or not to be that is the question."
-- ["To be or n","ot to be t","hat is the"," question."]

Applicatives

Like monads Applicatives are an abstract structure for a wide class of computations that sit between functors and monads in terms of generality.

pure :: Applicative f => a -> f a
(<$>) :: Functor f => (a -> b) -> f a -> f b
(<*>) :: f (a -> b) -> f a -> f b

As of GHC 7.6, Applicative is defined as:

class Functor f => Applicative f where
  pure :: a -> f a
  (<*>) :: f (a -> b) -> f a -> f b

(<$>) :: Functor f => (a -> b) -> f a -> f b
(<$>) = fmap

With the following laws:

pure id <*> v = v
pure f <*> pure x = pure (f x)
u <*> pure y = pure ($ y) <*> u
u <*> (v <*> w) = pure (.) <*> u <*> v <*> w

As an example, consider the instance for Maybe:

instance Applicative Maybe where
  pure              = Just
  Nothing <*> _     = Nothing
  _ <*> Nothing     = Nothing
  Just f <*> Just x = Just (f x)

As a rule of thumb, whenever we would use m >>= return . f what we probably want is an applicative functor, and not a monad.

import Control.Applicative ((<$>), (<*>))
import Network.HTTP

example1 :: Maybe Integer
example1 = (+) <$> m1 <*> m2
  where
    m1 = Just 3
    m2 = Nothing

-- Nothing

example2 :: [(Int, Int, Int)]
example2 = (,,) <$> m1 <*> m2 <*> m3
  where
    m1 = [1, 2]
    m2 = [10, 20]
    m3 = [100, 200]

-- [(1,10,100),(1,10,200),(1,20,100),(1,20,200),(2,10,100),(2,10,200),(2,20,100),(2,20,200)]

example3 :: IO String
example3 = (++) <$> fetch1 <*> fetch2
  where
    fetch1 = simpleHTTP (getRequest "http://www.python.org/") >>= getResponseBody
    fetch2 = simpleHTTP (getRequest "http://www.haskell.org/") >>= getResponseBody

The pattern f <$> a <*> b ... shows up so frequently that there is a family of functions to lift applicatives of a fixed number arguments. This pattern also shows up frequently with monads (liftM, liftM2, liftM3).

liftA :: Applicative f => (a -> b) -> f a -> f b
liftA f a = pure f <*> a

liftA2 :: Applicative f => (a -> b -> c) -> f a -> f b -> f c
liftA2 f a b = f <$> a <*> b

liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftA3 f a b c = f <$> a <*> b <*> c

Applicative also has functions *> and <* that sequence applicative actions while discarding the value of one of the arguments. The operator *> discards the left while <* discards the right. For example in a monadic parser combinator library the *> would parse with first parser argument but return the second.

The Applicative functions <$> and <*> are generalized by liftM and ap for monads.

import Control.Monad
import Control.Applicative

data C a b = C a b

mnd :: Monad m => m a -> m b -> m (C a b)
mnd a b = C `liftM` a `ap` b

apl :: Applicative f => f a -> f b -> f (C a b)
apl a b = C <$> a <*> b

See: Applicative Programming with Effects

Alternative

Alternative is an extension of the Applicative class with a zero element and an associative binary operation respecting the zero.

class Applicative f => Alternative f where
  -- | The identity of '<|>'
  empty :: f a
  -- | An associative binary operation
  (<|>) :: f a -> f a -> f a
  -- | One or more.
  some :: f a -> f [a]
  -- | Zero or more.
  many :: f a -> f [a]

optional :: Alternative f => f a -> f (Maybe a)

when :: (Alternative f) => Bool -> f () -> f ()
when p s = if p then s else return ()

guard :: (Alternative f) => Bool -> f ()
guard True  = pure ()
guard False = mzero
instance Alternative Maybe where
    empty = Nothing
    Nothing <|> r = r
    l       <|> _ = l

instance Alternative [] where
    empty = []
    (<|>) = (++)
λ: foldl1 (<|>) [Nothing, Just 5, Just 3]
Just 5

These instances show up very frequently in parsers where the alternative operator can model alternative parse branches.

Arrows

A category is an algebraic structure that includes a notion of an identity and a composition operation that is associative and preserves identities. In practice arrows are not often used in modern Haskell and are often considered a code smell.

class Category cat where
  id :: cat a a
  (.) :: cat b c -> cat a b -> cat a c
instance Category (->) where
  id = Prelude.id
  (.) = (Prelude..)
(<<<) :: Category cat => cat b c -> cat a b -> cat a c
(<<<) = (.)

(>>>) :: Category cat => cat a b -> cat b c -> cat a c
f >>> g = g . f

Arrows are an extension of categories with the notion of products.

class Category a => Arrow a where
  arr :: (b -> c) -> a b c
  first :: a b c -> a (b,d) (c,d)
  second :: a b c -> a (d,b) (d,c)
  (***) :: a b c -> a b' c' -> a (b,b') (c,c')
  (&&&) :: a b c -> a b c' -> a b (c,c')

The canonical example is for functions.

instance Arrow (->) where
  arr f = f
  first f = f *** id
  second f = id *** f
  (***) f g ~(x,y) = (f x, g y)

In this form, functions of multiple arguments can be threaded around using the arrow combinators in a much more pointfree form. For instance a histogram function has a nice one-liner.

import Data.List (group, sort)

histogram :: Ord a => [a] -> [(a, Int)]
histogram = map (head &&& length) . group . sort
λ: histogram "Hello world"
[(' ',1),('H',1),('d',1),('e',1),('l',3),('o',2),('r',1),('w',1)]

Arrow notation

GHC has builtin syntax for composing arrows using proc notation. The following are equivalent after desugaring:

{-# LANGUAGE Arrows #-}

addA :: Arrow a => a b Int -> a b Int -> a b Int
addA f g = proc x -> do
                y <- f -< x
                z <- g -< x
                returnA -< y + z
addA f g = arr (\ x -> (x, x)) >>>
           first f >>> arr (\ (y, x) -> (x, y)) >>>
           first g >>> arr (\ (z, y) -> y + z)
addA f g = f &&& g >>> arr (\ (y, z) -> y + z)

In practice this notation is not often used and may become deprecated in the future.

See: Arrow Notation

Bifunctors

Bifunctors are a generalization of functors to include types parameterized by two parameters and include two map functions for each parameter.

class Bifunctor p where
  bimap :: (a -> b) -> (c -> d) -> p a c -> p b d
  first :: (a -> b) -> p a c -> p b c
  second :: (b -> c) -> p a b -> p a c

The bifunctor laws are a natural generalization of the usual functor laws. Namely they respect identities and composition in the usual way:

bimap id idid
first idid
second idid
bimap f g ≡ first f . second g

The canonical example is for 2-tuples.

λ: first (+1) (1,2)
(2,2)
λ: second (+1) (1,2)
(1,3)
λ: bimap (+1) (+1) (1,2)
(2,3)

λ: first (+1) (Left 3)
Left 4
λ: second (+1) (Left 3)
Left 3
λ: second (+1) (Right 3)
Right 4

Polyvariadic Functions

One surprising application of typeclasses is the ability to construct functions which take an arbitrary number of arguments by defining instances over function types. The arguments may be of arbitrary type, but the resulting collected arguments must either be converted into a single type or unpacked into a sum type.

{-# LANGUAGE FlexibleInstances #-}

class Arg a where
  collect' :: [String] -> a

-- extract to IO
instance Arg (IO ()) where
  collect' acc = mapM_ putStrLn acc

-- extract to [String]
instance Arg [String] where
  collect' acc = acc

instance (Show a, Arg r) => Arg (a -> r) where
  collect' acc = \x -> collect' (acc ++ [show x])

collect :: Arg t => t
collect = collect' []

example1 :: [String]
example1 = collect 'a' 2 3.0

example2 :: IO ()
example2 = collect () "foo" [1,2,3]

Error Handling

There are a plethora of ways of handling errors in Haskell. While Haskell’s runtime supports throwing and handling exceptions, it is important to use the right method in the right context.

Either Monad

In keeping with the Haskell tradition it is always preferable to use pure logic when possible. In many simple cases error handling can be done quite simply by using the Monad instance of Either. Monadic bind simply threads a Right value through the monad and “short-circuits” evaluation when a Left is introduced. This is simple enough error handling which privileges the Left constructor to hold the error. Many simple functions which can fail can simply use the Either Error a in the result type to encode simple error handling.

The downside to this is that it forces every consumer of the function to pattern match on the result to handle the error case. It also assumes that all Error types can be encoded inside of the sum type holding the possible failures.

saveDiv -> Float -> Float -> Either DivError Float
safeDiv x 0 = Left NoDivZero
safeDiv x y = Right (x `div` y)

ExceptT

When using the transformers style effect stacks it is quite common to need to have a layer of the stack which can fail. When using the style of composing effects a monad transformer (which is a wrapper around Either monad) can be added which lifts the error handling into an ExceptT effect layer.

As of mtl 2.2 or higher, the ErrorT class has been replaced by ExceptT at the transformers level.

newtype ExceptT e m a = ExceptT (m (Either e a))

runExceptT :: ExceptT e m a -> m (Either e a)
runExceptT (ExceptT m) = m

instance (Monad m) => Monad (ExceptT e m) where
    return a = ExceptT $ return (Right a)
    m >>= k = ExceptT $ do
        a <- runExceptT m
        case a of
            Left e -> return (Left e)
            Right x -> runExceptT (k x)
    fail = ExceptT . fail

throwE :: (Monad m) => e -> ExceptT e m a
throwE = ExceptT . return . Left

catchE :: (Monad m) =>
    ExceptT e m a               -- ^ the inner computation
    -> (e -> ExceptT e' m a)    -- ^ a handler for exceptions in the inner
                                -- computation
    -> ExceptT e' m a
m `catchE` h = ExceptT $ do
    a <- runExceptT m
    case a of
        Left  l -> runExceptT (h l)
        Right r -> return (Right r)

And also this can be extended to the mtl MonadError instance for which we can write instances for IO and Either themselves:

instance MonadTrans (ExceptT e) where
    lift = ExceptT . liftM Right

class (Monad m) => MonadError e m | m -> e where
    throwError :: e -> m a
    catchError :: m a -> (e -> m a) -> m a

instance MonadError IOException IO where
    throwError = ioError
    catchError = catch

instance MonadError e (Either e) where
    throwError             = Left
    Left  l `catchError` h = h l
    Right r `catchError` _ = Right r

See:

Control.Exception

GHC has a builtin system for propagating errors up at the runtime level, below the business logic level. These are used internally for all sorts of concurrency and system interfaces. The runtime provides builtin operations throw and catch functions which allow us to throw exceptions in pure code and catch the resulting exception within IO. Note that the return value of throw inhabits all types.

throw :: Exception e => e -> a
catch :: Exception e => IO a -> (e -> IO a) -> IO a
try :: Exception e => IO a -> IO (Either e a)
evaluate :: a -> IO a
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Exception

data MyException = MyException
    deriving (Show, Typeable)

instance Exception MyException

evil :: [Int]
evil = [throw MyException]

example1 :: Int
example1 = head evil

example2 :: Int
example2 = length evil

main :: IO ()
main = do
  a <- try (evaluate example1) :: IO (Either MyException Int)
  print a

  b <- try (return example2) :: IO (Either MyException Int)
  print b

Because a value will not be evaluated unless needed, if one desires to know for sure that an exception is either caught or not it can be deeply forced into head normal form before invoking catch. The strictCatch is not provided by the standard library but has a simple implementation in terms of deepseq.

strictCatch :: (NFData a, Exception e) => IO a -> (e -> IO a) -> IO a
strictCatch = catch . (toNF =<<)

Exceptions

The problem with the previous approach is having to rely on GHC’s asynchronous exception handling inside of IO to handle basic operations and the bifurcation of APIs which need to expose different APIs for any monad that has failure (IO, STM, ExceptT, etc.).

The exceptions package provides the same API as Control.Exception but loosens the dependency on IO. It instead provides a granular set of typeclasses which can operate over different monads which require a precise subset of error handling methods.

There are three core primitives that are used in handling runtime exceptions:

finally takes an IO action to run as a computation and a secondary function to run after the evaluation of the first.

finally :: IO a  -- ^ computation to run first
        -> IO b  -- ^ computation to run afterward (even if an exception was raised)
        -> IO a  -- returns the value from the first computation

onException has a similar signature but the second function is run only if an exception is raised.

onException :: IO a -> IO b -> IO a

The bracket function takes two functions, an acquisition function and a finalizer function which “bracket” the evaluation of the third. The finaliser will be run if the computation throwns an exception and unwinds.

bracket
        :: IO a         -- ^ computation to run first
        -> (a -> IO b)  -- ^ computation to run last
        -> (a -> IO c)  -- ^ computation to run in-between
        -> IO c         -- returns the value from the in-between computation

A simple example of usage is bracket logic that handles file descriptors which need to be explicitly closed after evaluation is done. The initialiser in this case will return a file descriptor to the body and then run hClose on the file descriptor after the body is done with evaluation.

bracket
  (openFile "myfile" ReadMode)    -- acquisition
  (hClose)                        -- finaliser
  (\fileHandle -> ... )           -- body

In addition the exceptions library exposes several functions for explicitly handling a variety of exceptions of various forms. Toplevel handlers that need to “catch em’ all” should use catchAny for wildcard error handling.

catch :: (MonadCatch m, Exception e) => m a -> (e -> m a) -> m a
catchIO :: MonadCatch m => m a -> (IOException -> m a) -> m a
catchAny :: MonadCatch m => m a -> (SomeException -> m a) -> m a
catchAsync :: (MonadCatch m, Exception e) => m a -> (e -> m a) -> m a

A simple example of usage:

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable
import Control.Monad.Catch
import Control.Monad.Identity

data MyException = MyException
    deriving (Show, Typeable)

instance Exception MyException

example :: MonadCatch m => Int -> Int -> m Int
example x y | y == 0 = throwM MyException
            | otherwise = return $ x `div` y

pure :: MonadCatch m => m (Either MyException Int)
pure = do
  a <- try (example 1 2)
  b <- try (example 1 0)
  return (a >> b)

See: exceptions

Spoon

Sometimes you’ll be forced to deal with seemingly pure functions that can throw up at any point. There are many functions in the standard library like this, and many more on Hackage. You’d like to handle this logic purely as if it were returning a proper Maybe a but to catch the logic you’d need to install an IO handler inside IO to catch it. Spoon allows us to safely (and “purely”, although it uses a referentially transparent invocation of unsafePerformIO) to catch these exceptions and put them in Maybe where they belong.

The spoon function evaluates its argument to head normal form, while teaspoon evaluates to weak head normal form.

import Control.Spoon

goBoom :: Int -> Int -> Int
goBoom x y = x `div` y

-- evaluate to normal form
test1 :: Maybe [Int]
test1 = spoon [1, 2, undefined]

-- evaluate to weak head normal form
test2 :: Maybe [Int]
test2 = teaspoon [1, 2, undefined]

main :: IO ()
main = do
  maybe (putStrLn "Nothing") (print . length) test1
  maybe (putStrLn "Nothing") (print . length) test2

Advanced Monads

When working with the wider library you will find there a variety of “advanced monads” which are higher-level constructions on top of of the monadic interface which enrich the structure with additional rules or build APIs for combining different types of monads. Some of the most-used cases are mentioned in this section.

Function Monad

If one writes Haskell long enough one might eventually encounter the curious beast that is the ((->) r) monad instance. It generally tends to be non-intuitive to work with, but is quite simple when one considers it as an unwrapped Reader monad.

instance Functor ((->) r) where
  fmap = (.)

instance Monad ((->) r) where
  return = const
  f >>= k = \r -> k (f r) r

This just uses a prefix form of the arrow type operator.

import Control.Monad

id' :: (->) a a
id' = id

const' :: (->) a ((->) b a)
const' = const

-- Monad m => a -> m a
fret :: a -> b -> a
fret = return

-- Monad m => m a -> (a -> m b) -> m b
fbind :: (r -> a) -> (a -> (r -> b)) -> (r -> b)
fbind f k = f >>= k

-- Monad m => m (m a) -> m a
fjoin :: (r -> (r -> a)) -> (r -> a)
fjoin = join

fid :: a -> a
fid = const >>= id

-- Functor f => (a -> b) -> f a -> f b
fcompose :: (a -> b) -> (r -> a) -> (r -> b)
fcompose = (.)
type Reader r = (->) r -- pseudocode

instance Monad (Reader r) where
  return a = \_ -> a
  f >>= k = \r -> k (f r) r

ask' :: r -> r
ask' = id

asks' :: (r -> a) -> (r -> a)
asks' f = id . f

runReader' :: (r -> a) -> r -> a
runReader' = id

RWS Monad

The RWS monad combines the functionality of the three monads discussed above, the Reader, Writer, and State. There is also a RWST transformer.

runReader :: Reader r a -> r -> a
runWriter :: Writer w a -> (a, w)
runState  :: State s a -> s -> (a, s)

These three eval functions are now combined into the following functions:

runRWS  :: RWS r w s a -> r -> s -> (a, s, w)
execRWS :: RWS r w s a -> r -> s -> (s, w)
evalRWS :: RWS r w s a -> r -> s -> (a, w)
import Control.Monad.RWS

type R = Int
type W = [Int]
type S = Int

computation :: RWS R W S ()
computation = do
  e <- ask
  a <- get
  let b = a + e
  put b
  tell [b]

example = runRWS computation 2 3

The usual caveat about Writer laziness also applies to RWS.

Cont

runCont :: Cont r a -> (a -> r) -> r
callCC :: MonadCont m => ((a -> m b) -> m a) -> m a
cont :: ((a -> r) -> r) -> Cont r a

In continuation passing style, composite computations are built up from sequences of nested computations which are terminated by a final continuation which yields the result of the full computation by passing a function into the continuation chain.

add :: Int -> Int -> Int
add x y = x + y

add :: Int -> Int -> (Int -> r) -> r
add x y k = k (x + y)
import Control.Monad
import Control.Monad.Cont

add :: Int -> Int -> Cont k Int
add x y = return $ x + y

mult :: Int -> Int -> Cont k Int
mult x y = return $ x * y

contt :: ContT () IO ()
contt = do
    k <- do
      callCC $ \exit -> do
        lift $ putStrLn "Entry"
        exit $ \_ -> do
          putStrLn "Exit"
    lift $ putStrLn "Inside"
    lift $ k ()

callcc :: Cont String Integer
callcc = do
  a <- return 1
  b <- callCC (\k -> k 2)
  return $ a+b

ex1 :: IO ()
ex1 = print $ runCont (f >>= g) id
  where
    f = add 1 2
    g = mult 3
-- 9

ex2 :: IO ()
ex2 = print $ runCont callcc show
-- "3"

ex3 :: IO ()
ex3 = runContT contt print
-- Entry
-- Inside
-- Exit

main :: IO ()
main = do
  ex1
  ex2
  ex3
newtype Cont r a = Cont { runCont :: ((a -> r) -> r) }

instance Monad (Cont r) where
  return a       = Cont $ \k -> k a
  (Cont c) >>= f = Cont $ \k -> c (\a -> runCont (f a) k)

class (Monad m) => MonadCont m where
  callCC :: ((a -> m b) -> m a) -> m a

instance MonadCont (Cont r) where
  callCC f = Cont $ \k -> runCont (f (\a -> Cont $ \_ -> k a)) k

MonadPlus

Choice and failure.

class (Alternative m, Monad m) => MonadPlus m where
   mzero :: m a
   mplus :: m a -> m a -> m a

instance MonadPlus [] where
   mzero = []
   mplus = (++)

instance MonadPlus Maybe where
   mzero = Nothing

   Nothing `mplus` ys  = ys
   xs      `mplus` _ys = xs

MonadPlus forms a monoid with

mzero `mplus` a = a
a `mplus` mzero = a
(a `mplus` b) `mplus` c = a `mplus` (b `mplus` c)
asum :: (Foldable t, Alternative f) => t (f a) -> f a
asum = foldr (<|>) empty

msum :: (Foldable t, MonadPlus m) => t (m a) -> m a
msum = asum
import Safe
import Control.Monad

list1 :: [(Int,Int)]
list1 = [(a,b) | a <- [1..25], b <- [1..25], a < b]

list2 :: [(Int,Int)]
list2 = do
  a <- [1..25]
  b <- [1..25]
  guard (a < b)
  return $ (a,b)

maybe1 :: String -> String -> Maybe Double
maybe1 a b = do
  a' <- readMay a
  b' <- readMay b
  guard (b' /= 0.0)
  return $ a'/b'

maybe2 :: Maybe Int
maybe2 = msum [Nothing, Nothing, Just 3, Just 4]

MonadFail

Before the great awakening, Monads used to be defined as the following class.

class  Monad m  where
    (>>=)   :: m a -> (a -> m b) -> m b
    (>>)    :: m a -> m b -> m b
    return  :: a -> m a
    fail    :: String -> m a

    m >> k  =  m >>= \_ -> k
    fail s  = error s

This was eventually deemed not to be an great design and in particular the fail function was a misplaced lawless entity that would generate bottoms. It was also necessary to define fail for all monads, even those without a notion of failure. This was considered quite ugly and eventually a breaking change to base (landed in 4.9) was added which split out MonadFail into a separate class where it belonged.

class Monad m => MonadFail m where
    fail :: String -> m a

Some of the common instances of MonadFail are shown below:

instance MonadFail Maybe where
    fail _ = Nothing

instance MonadFail [] where
    {-# INLINE fail #-}
    fail _ = []

instance MonadFail IO where
    fail = failIO

MonadFix

The fixed point of a monadic computation. mfix f executes the action f only once, with the eventual output fed back as the input.

fix :: (a -> a) -> a
fix f = let x = f x in x

mfix :: (a -> m a) -> m a
class Monad m => MonadFix m where
   mfix :: (a -> m a) -> m a

instance MonadFix Maybe where
   mfix f = let a = f (unJust a) in a
            where unJust (Just x) = x
                  unJust Nothing  = error "mfix Maybe: Nothing"

The regular do-notation can also be extended with -XRecursiveDo to accommodate recursive monadic bindings.

{-# LANGUAGE RecursiveDo #-}

import Control.Applicative
import Control.Monad.Fix

stream1 :: Maybe [Int]
stream1 = do
  rec xs <- Just (1:xs)
  return (map negate xs)

stream2 :: Maybe [Int]
stream2 = mfix $ \xs -> do
  xs' <- Just (1:xs)
  return (map negate xs')

ST Monad

The ST monad models “threads” of stateful computations which can manipulate mutable references but are restricted to only return pure values when evaluated and are statically confined to the ST monad of a s thread.

runST :: (forall s. ST s a) -> a
newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()
import Control.Monad
import Control.Monad.ST
import Control.Monad.State.Strict
import Data.STRef

example1 :: Int
example1 = runST $ do
  x <- newSTRef 0
  forM_ [1 .. 1000] $ \j -> do
    writeSTRef x j
  readSTRef x

example2 :: Int
example2 = runST $ do
  count <- newSTRef 0
  replicateM_ (10 ^ 6) $ modifySTRef' count (+ 1)
  readSTRef count

example3 :: Int
example3 = flip evalState 0 $ do
  replicateM_ (10 ^ 6) $ modify' (+ 1)
  get

Using the ST monad we can create a class of efficient purely functional data structures that use mutable references in a referentially transparent way.

Free Monads

Pure :: a -> Free f a
Free :: f (Free f a) -> Free f a

liftF :: (Functor f, MonadFree f m) => f a -> m a
retract :: Monad f => Free f a -> f a

Free monads are monads which instead of having a join operation that combines computations, instead forms composite computations from application of a functor.

join :: Monad m => m (m a) -> m a
wrap :: MonadFree f m => f (m a) -> m a

One of the best examples is the Partiality monad which models computations which can diverge. Haskell allows unbounded recursion, but for example we can create a free monad from the Maybe functor which can be used to fix the call-depth of, for example the Ackermann function.

import Control.Monad.Fix
import Control.Monad.Free

type Partiality a = Free Maybe a

-- Non-termination.
never :: Partiality a
never = fix (Free . Just)

fromMaybe :: Maybe a -> Partiality a
fromMaybe (Just x) = Pure x
fromMaybe Nothing = Free Nothing

runPartiality :: Int -> Partiality a -> Maybe a
runPartiality 0 _ = Nothing
runPartiality _ (Pure a) = Just a
runPartiality _ (Free Nothing) = Nothing
runPartiality n (Free (Just a)) = runPartiality (n-1) a

ack :: Int -> Int -> Partiality Int
ack 0 n = Pure $ n + 1
ack m 0 = Free $ Just $ ack (m-1) 1
ack m n = Free $ Just $ ack m (n-1) >>= ack (m-1)

main :: IO ()
main = do
  let diverge = never :: Partiality ()
  print $ runPartiality 1000 diverge
  print $ runPartiality 1000 (ack 3 4)
  print $ runPartiality 5500 (ack 3 4)

The other common use for free monads is to build embedded domain-specific languages to describe computations. We can model a subset of the IO monad by building up a pure description of the computation inside of the IOFree monad and then using the free monad to encode the translation to an effectful IO computation.

{-# LANGUAGE DeriveFunctor #-}

import Control.Monad.Free
import System.Exit

data Interaction x
  = Puts String x
  | Gets (Char -> x)
  | Exit
  deriving (Functor)

type IOFree a = Free Interaction a

puts :: String -> IOFree ()
puts s = liftF $ Puts s ()

get :: IOFree Char
get = liftF $ Gets id

exit :: IOFree r
exit = liftF Exit

gets :: IOFree String
gets = do
  c <- get
  if c == '\n'
    then return ""
    else gets >>= \line -> return (c : line)

-- Collapse our IOFree DSL into IO monad actions.
interp :: IOFree a -> IO a
interp (Pure r) = return r
interp (Free x) = case x of
  Puts s t -> putStrLn s >> interp t
  Gets f -> getChar >>= interp . f
  Exit -> exitSuccess

echo :: IOFree ()
echo = do
  puts "Enter your name:"
  str <- gets
  puts str
  if length str > 10
    then puts "You have a long name."
    else puts "You have a short name."
  exit

main :: IO ()
main = interp echo

An implementation such as the one found in free might look like the following:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

data Free f a
  = Pure a
  | Free (f (Free f a))

instance Functor f => Functor (Free f) where
  fmap f (Pure a) = Pure (f a)
  fmap f x = go x
    where
      go (Free fa) = Free (go <$> fa)

instance Applicative f => Applicative (Free f) where
  pure = Pure
  Pure a <*> Pure b = Pure $ a b
  Pure a <*> Free mb = Free $ fmap a <$> mb
  Free ma <*> Pure b = Free $ fmap ($ b) <$> ma
  Free ma <*> Free mb = Free $ fmap (<*>) ma <*> mb

instance Applicative f => Monad (Free f) where
  return = Pure
  Pure a >>= f = f a
  Free f >>= g = Free (fmap (>>= g) f)

class Monad m => MonadFree f m where
  wrap :: f (m a) -> m a

instance Applicative f => MonadFree f (Free f) where
  wrap = Free

liftF :: (Functor f, MonadFree f m) => f a -> m a
liftF = wrap . fmap return

iter :: Functor f => (f a -> a) -> Free f a -> a
iter _ (Pure a) = a
iter phi (Free m) = phi (iter phi <$> m)

retract :: Monad f => Free f a -> f a
retract (Pure a) = return a
retract (Free as) = as >>= retract

Indexed Monads

Indexed monads are a generalisation of monads that adds an additional type parameter to the class that carries information about the computation or structure of the monadic implementation.

class IxMonad md where
  return :: a -> md i i a
  (>>=) :: md i m a -> (a -> md m o b) -> md i o b

The canonical use-case is a variant of the vanilla State which allows type-changing on the state for intermediate steps inside of the monad. This indeed turns out to be very useful for handling a class of problems involving resource management since the extra index parameter gives us space to statically enforce the sequence of monadic actions by allowing and restricting certain state transitions on the index parameter at compile-time.

To make this more usable we’ll use the somewhat esoteric -XRebindableSyntax allowing us to overload the do-notation and if-then-else syntax by providing alternative definitions local to the module.

{-# LANGUAGE RebindableSyntax #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

import Data.IORef
import Data.Char
import Prelude hiding (fmap, (>>=), (>>), return)
import Control.Applicative

newtype IState i o a = IState { runIState :: i -> (a, o) }

evalIState :: IState i o a -> i -> a
evalIState st i = fst $ runIState st i

execIState :: IState i o a -> i -> o
execIState st i = snd $ runIState st i

ifThenElse :: Bool -> a -> a -> a
ifThenElse b i j = case b of
  True -> i
  False -> j

return :: a -> IState s s a
return a = IState $ \s -> (a, s)

fmap :: (a -> b) -> IState i o a -> IState i o b
fmap f v = IState $ \i -> let (a, o) = runIState v i
                          in (f a, o)

join :: IState i m (IState m o a) -> IState i o a
join v = IState $ \i -> let (w, m) = runIState v i
                        in runIState w m

(>>=) :: IState i m a -> (a -> IState m o b) -> IState i o b
v >>= f = IState $ \i -> let (a, m) = runIState v i
                         in runIState (f a) m

(>>) :: IState i m a -> IState m o b -> IState i o b
v >> w = v >>= \_ -> w

get :: IState s s s
get = IState $ \s -> (s, s)

gets :: (a -> o) -> IState a o a
gets f = IState $ \s -> (s, f s)

put :: o -> IState i o ()
put o = IState $ \_ -> ((), o)

modify :: (i -> o) -> IState i o ()
modify f = IState $ \i -> ((), f i)



data Locked = Locked
data Unlocked = Unlocked

type Stateful a = IState a Unlocked a

acquire :: IState i Locked ()
acquire = put Locked

-- Can only release the lock if it's held, try release the lock
-- that's not held is a now a type error.
release :: IState Locked Unlocked ()
release = put Unlocked

-- Statically forbids improper handling of resources.
lockExample :: Stateful a
lockExample = do
  ptr <- get  :: IState a a a
  acquire     :: IState a Locked ()
  -- ...
  release     :: IState Locked Unlocked ()
  return ptr

-- Couldn't match type `Locked' with `Unlocked'
-- In a stmt of a 'do' block: return ptr
failure1 :: Stateful a
failure1 = do
  ptr <- get
  acquire
  return ptr -- didn't release

-- Couldn't match type `a' with `Locked'
-- In a stmt of a 'do' block: release
failure2 :: Stateful a
failure2 = do
  ptr <- get
  release -- didn't acquire
  return ptr

-- Evaluate the resulting state, statically ensuring that the
-- lock is released when finished.
evalReleased :: IState i Unlocked a -> i -> a
evalReleased f st = evalIState f st

example :: IO (IORef Integer)
example = evalReleased <$> pure lockExample <*> newIORef 0

Lifted Base

The default prelude predates a lot of the work on monad transformers and as such many of the common functions for handling errors and interacting with IO are bound strictly to the IO monad and not to functions implementing stacks on top of IO or ST. The lifted-base provides generic control operations such as catch can be lifted from IO or any other base monad.

monad-base

Monad base provides an abstraction over liftIO and other functions to explicitly lift into a “privileged” layer of the transformer stack. It’s implemented as a multiparameter typeclass with the “base” monad as the parameter b.

-- | Lift a computation from the base monad
class (Applicative b, Applicative m, Monad b, Monad m)
      => MonadBase b m | m -> b where
  liftBase ∷ b a -> m a

monad-control

Monad control builds on top of monad-base to extended lifting operation to control operations like catch and bracket can be written generically in terms of any transformer with a base layer supporting these operations. Generic operations can then be expressed in terms of a MonadBaseControl and written in terms of the combinator control which handles the bracket and automatic handler lifting.

control :: MonadBaseControl b m => (RunInBase m b -> b (StM m a)) -> m a

For example the function catch provided by Control.Exception is normally locked into IO.

catch :: Exception e => IO a -> (e -> IO a) -> IO a

By composing it in terms of control we can construct a generic version which automatically lifts inside of any combination of the usual transformer stacks that has MonadBaseControl instance.

catch
  :: (MonadBaseControl IO m, Exception e)
  => m a        -- ^ Computation
  -> (e -> m a) -- ^ Handler
  -> m a
catch a handler = control $ \runInIO ->
                    E.catch (runInIO a)
                            (\e -> runInIO $ handler e)

Quantification

In logic a predicate is a statement about a subject. For instance the statement: Socrates is a man, can be written as:

Man(Socrates)

A predicate assigned to a variable Man(x) has a truth value if the predicate holds for the subject. The domain of a variable is the set of all variables that may be assigned to the variable. A quantifier turns predicates into propositions by assigning values to all variables. For example the statement: All men are mortal. This is an example of a universal quantifier which describe a predicate that holds forall inhabitants of the domain of variables.

Forall x. If Man(x) then Mortal(x)

The truth value that that Socrates is mortal can be derived from above relation. Programming with quantifiers in Haskell follows this same kind of logical convention except we will be working with types and constraints on types.

Universal Quantification

Universal quantification the primary mechanism of encoding polymorphism in Haskell. The essence of universal quantification is that we can express functions which operate the same way for a set of types and whose function behavior is entirely determined only by the behavior of all types in this span. These are represented at the type-level by in the introduction of a universal quantifier (forall or ) over a set of the type variables in the signature.

{-# LANGUAGE ExplicitForAll #-}

-- ∀a. [a]
example1 :: forall a. [a]
example1 = []

-- ∀a. [a]
example2 :: forall a. [a]
example2 = [undefined]

-- ∀a. ∀b. (a → b) → [a] → [b]
map' :: forall a. forall b. (a -> b) -> [a] -> [b]
map' f = foldr ((:) . f) []

-- ∀a. [a] → [a]
reverse' :: forall a. [a] -> [a]
reverse' = foldl (flip (:)) []

Normally quantifiers are omitted in type signatures since in Haskell’s vanilla surface language it is unambiguous to assume to that free type variables are universally quantified. So the following two are equivalent:

id :: forall a. a -> a
id :: a -> a

Free Theorems

A universally quantified type-variable actually implies quite a few rather deep properties about the implementation of a function that can be deduced from its type signature. For instance the identity function in Haskell is guaranteed to only have one implementation since the only information that the information that can present in the body:

id :: forall a. a -> a
id x = x

These so called free theorems are properties that hold for any well-typed inhabitant of a universally quantified signature.

fmap :: Functor f => (a -> b) -> f a -> f b

For example a free theorem of fmap is that every implementation of functor can only ever have the property that composition of maps of functions is the same as maps of the functions composed together.

forall f g. fmap f . fmap g = fmap (f . g)

Type Systems

Hindley-Milner type system

The Hindley-Milner type system is historically important as one of the first typed lambda calculi that admitted both polymorphism and a variety of inference techniques that could always decide principal types.

e : x
  | λx:t.e            -- value abstraction
  | e1 e2             -- application
  | let x = e1 in e2  -- let

t : t -> t     -- function types
  | a          -- type variables

σ : ∀ a . t    -- type scheme

In an type checker implementation, a generalize function converts all type variables within the type into polymorphic type variables yielding a type scheme. While a instantiate function maps a scheme to a type, but with any polymorphic variables converted into unbound type variables.

Rank-N Types

System-F is the type system that underlies Haskell. System-F subsumes the HM type system in the sense that every type expressible in HM can be expressed within System-F. System-F is sometimes referred to in texts as the Girald-Reynolds polymorphic lambda calculus or second-order lambda calculus.

t : t -> t     -- function types
  | a          -- type variables
  | ∀ a . t    -- forall

e : x          -- variables
  | λ(x:t).e   -- value abstraction
  | e1 e2      -- value application
  | Λa.e       -- type abstraction
  | e_t        -- type application

An example with equivalents of GHC Core in comments:

id : ∀ t. t -> t
id = Λt. λx:t. x
-- id :: forall t. t -> t
-- id = \ (@ t) (x :: t) -> x

tr : ∀ a. ∀ b. a -> b -> a
tr = Λa. Λb. λx:a. λy:b. x
-- tr :: forall a b. a -> b -> a
-- tr = \ (@ a) (@ b) (x :: a) (y :: b) -> x

fl : ∀ a. ∀ b. a -> b -> b
fl = Λa. Λb. λx:a. λy:b. y
-- fl :: forall a b. a -> b -> b
-- fl = \ (@ a) (@ b) (x :: a) (y :: b) -> y

nil : ∀ a. [a]
nil = Λa. Λb. λz:b. λf:(a -> b -> b). z
-- nil :: forall a. [a]
-- nil = \ (@ a) (@ b) (z :: b) (f :: a -> b -> b) -> z

cons : ∀ a. a -> [a] -> [a]
cons = Λa. λx:a. λxs:(∀ b. b -> (a -> b -> b) -> b).
    Λb. λz:b. λf : (a -> b -> b). f x (xs_b z f)
-- cons :: forall a. a -> [a] -> [a]
-- cons = \ (@ a) (x :: a) (xs :: forall b. b -> (a -> b -> b) -> b)
--     (@ b) (z :: b) (f :: a -> b -> b) -> f x (xs @ b z f)

Normally when Haskell’s typechecker infers a type signature it places all quantifiers of type variables at the outermost position such that no quantifiers appear within the body of the type expression, called the prenex restriction. This restricts an entire class of type signatures that would otherwise be expressible within System-F, but has the benefit of making inference much easier.

-XRankNTypes loosens the prenex restriction such that we may explicitly place quantifiers within the body of the type. The bad news is that the general problem of inference in this relaxed system is undecidable in general, so we’re required to explicitly annotate functions which use RankNTypes or they are otherwise inferred as rank 1 and may not typecheck at all.

{-# LANGUAGE RankNTypes #-}

-- Can't unify ( Bool ~ Char )
rank1 :: forall a. (a -> a) -> (Bool, Char)
rank1 f = (f True, f 'a')

rank2 :: (forall a. a -> a) -> (Bool, Char)
rank2 f = (f True, f 'a')

auto :: (forall a. a -> a) -> (forall b. b -> b)
auto x = x

xauto :: forall a. (forall b. b -> b) -> a -> a
xauto f = f
Monomorphic Rank 0: t
Polymorphic Rank 1: forall a. a -> t
Polymorphic Rank 2: (forall a. a -> t) -> t
Polymorphic Rank 3: ((forall a. a -> t) -> t) -> t

Of important note is that the type variables bound by an explicit quantifier in a higher ranked type may not escape their enclosing scope. The typechecker will explicitly enforce this by enforcing that variables bound inside of rank-n types (called skolem constants) will not unify with free meta type variables inferred by the inference engine.

{-# LANGUAGE RankNTypes #-}

escape :: (forall a. a -> a) -> Int
escape f = f 0

g x = escape (\a -> x)

In this example in order for the expression to be well typed, f would necessarily have (Int -> Int) which implies that a ~ Int over the whole type, but since a is bound under the quantifier it must not be unified with Int and so the typechecker must fail with a skolem capture error.

Couldn't match expected type `a' with actual type `t'
`a' is a rigid type variable bound by a type expected by the context: a -> a
`t' is a rigid type variable bound by the inferred type of g :: t -> Int
In the expression: x In the first argument of `escape', namely `(\ a -> x)'
In the expression: escape (\ a -> x)

This can actually be used for our advantage to enforce several types of invariants about scope and use of specific type variables. For example the ST monad uses a second rank type to prevent the capture of references between ST monads with separate state threads where the s type variable is bound within a rank-2 type and cannot escape, statically guaranteeing that the implementation details of the ST internals can’t leak out and thus ensuring its referential transparency.

Existential Quantification

An existential type is a pair of a type and a term with a special set of packing and unpacking semantics. The type of the value encoded in the existential is known by the producer but not by the consumer of the existential value.

{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE RankNTypes #-}

-- ∃ t. (t, t → t, t → String)
data Box = forall a. Box
  { value  :: a
  , update :: a -> a
  , print  :: a -> String
  }

boxa :: Box
boxa = Box 1 negate show

boxb :: Box
boxb = Box "foo" reverse show

apply :: Box -> String
apply (Box x f p) = p (f x)

-- ∃ t. Show t => t
data SBox = forall a. Show a => SBox a

boxes :: [SBox]
boxes = [SBox (), SBox 2, SBox "foo"]

showBox :: SBox -> String
showBox (SBox a) = show a

main :: IO ()
main = mapM_ (putStrLn . showBox) boxes
-- ()
-- 2
-- "foo"

The existential over SBox gathers a collection of values defined purely in terms of their Show interface and an opaque pointer, no other information is available about the values and they can’t be accessed or unpacked in any other way.

Passing around existential types allows us to hide information from consumers of data types and restrict the behavior that functions can use. Passing records around with existential variables allows a type to be “bundled” with a fixed set of functions that operate over its hidden internals.

Impredicative Types

Although extremely brittle, GHC also has limited support for impredicative polymorphism which allows instantiating type variable with a polymorphic type. Implied is that this loosens the restriction that quantifiers must precede arrow types and now they may be placed inside of type-constructors.

-- Can't unify ( Int ~ Char )

revUni :: forall a. Maybe ([a] -> [a]) -> Maybe ([Int], [Char])
revUni (Just g) = Just (g [3], g "hello")
revUni Nothing  = Nothing
{-# LANGUAGE ImpredicativeTypes #-}

-- Uses higher-ranked polymorphism.
f :: (forall a. [a] -> a) -> (Int, Char)
f get = (get [1,2], get ['a', 'b', 'c'])

-- Uses impredicative polymorphism.
g :: Maybe (forall a. [a] -> a) -> (Int, Char)
g Nothing = (0, '0')
g (Just get) = (get [1,2], get ['a','b','c'])

Use of this extension is very rare, and there is some consideration that -XImpredicativeTypes is fundamentally broken. Although GHC is very liberal about telling us to enable it when one accidentally makes a typo in a type signature!

Some notable trivia, the ($) operator is wired into GHC in a very special way as to allow impredicative instantiation of runST to be applied via ($) by special-casing the ($) operator only when used for the ST monad.

For example if we define a function apply which should behave identically to ($) we’ll get an error about polymorphic instantiation even though they are defined identically!

{-# LANGUAGE RankNTypes #-}

import Control.Monad.ST

f `apply` x =  f x

foo :: (forall s. ST s a) -> a
foo st = runST $ st

bar :: (forall s. ST s a) -> a
bar st = runST `apply` st
    Couldn't match expected type `forall s. ST s a'
                with actual type `ST s0 a'
    In the second argument of `apply', namely `st'
    In the expression: runST `apply` st
    In an equation for `bar': bar st = runST `apply` st

See:

Scoped Type Variables

Normally the type variables used within the toplevel signature for a function are only scoped to the type-signature and not the body of the function and its rigid signatures over terms and let/where clauses. Enabling -XScopedTypeVariables loosens this restriction allowing the type variables mentioned in the toplevel to be scoped within the value-level body of a function and all signatures contained therein.

{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE ScopedTypeVariables #-}

poly :: forall a b c. a -> b -> c -> (a, a)
poly x y z = (f x y, f x z)
  where
    -- second argument is universally quantified from inference
    -- f :: forall t0 t1. t0 -> t1 -> t0
    f x' _ = x'

mono :: forall a b c. a -> b -> c -> (a, a)
mono x y z = (f x y, f x z)
  where
    -- b is not implicitly universally quantified because it is in scope
    f :: a -> b -> a
    f x' _ = x'

example :: IO ()
example = do
  x :: [Int] <- readLn
  print x

GADTs

Generalized Algebraic Data types (GADTs) are an extension to algebraic datatypes that allow us to qualify the constructors to datatypes with type equality constraints, allowing a class of types that are not expressible using vanilla ADTs.

-XGADTs implicitly enables an alternative syntax for datatype declarations ( -XGADTSyntax ) such that the following declarations are equivalent:

-- Vanilla
data List a
  = Empty
  | Cons a (List a)

-- GADTSyntax
data List a where
  Empty :: List a
  Cons :: a -> List a -> List a

For an example use consider the data type Term, we have a term in which we Succ which takes a Term parameterized by a which spans all types. Problems arise between the clash whether (a ~ Bool) or (a ~ Int) when trying to write the evaluator.

data Term a
  = Lit a
  | Succ (Term a)
  | IsZero (Term a)

-- can't be well-typed :(
eval (Lit i)      = i
eval (Succ t)     = 1 + eval t
eval (IsZero i)   = eval i == 0

And we admit the construction of meaningless terms which forces more error handling cases.

-- This is a valid type.
failure = Succ ( Lit True )

Using a GADT we can express the type invariants for our language (i.e. only type-safe expressions are representable). Pattern matching on this GADT then carries type equality constraints without the need for explicit tags.

{-# Language GADTs #-}

data Term a where
  Lit    :: a -> Term a
  Succ   :: Term Int -> Term Int
  IsZero :: Term Int -> Term Bool
  If     :: Term Bool -> Term a -> Term a -> Term a

eval :: Term a -> a
eval (Lit i)      = i                                   -- Term a
eval (Succ t)     = 1 + eval t                          -- Term (a ~ Int)
eval (IsZero i)   = eval i == 0                         -- Term (a ~ Int)
eval (If b e1 e2) = if eval b then eval e1 else eval e2 -- Term (a ~ Bool)

example :: Int
example = eval (Succ (Succ (Lit 3)))

This time around:

-- This is rejected at compile-time.
failure = Succ ( Lit True )

Explicit equality constraints (a ~ b) can be added to a function’s context. For example the following expand out to the same types.

f :: a -> a -> (a, a)
f :: (a ~ b) => a -> b -> (a,b)
(Int ~ Int)  => ...
(a ~ Int)    => ...
(Int ~ a)    => ...
(a ~ b)      => ...
(Int ~ Bool) => ... -- Will not typecheck.

This is effectively the implementation detail of what GHC is doing behind the scenes to implement GADTs ( implicitly passing and threading equality terms around ). If we wanted we could do the same setup that GHC does just using equality constraints and existential quantification. Indeed, the internal representation of GADTs is as regular algebraic datatypes that carry coercion evidence as arguments.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExistentialQuantification #-}

-- Using Constraints
data Exp a
  = (a ~ Int) => LitInt a
  | (a ~ Bool) => LitBool a
  | forall b. (b ~ Bool) => If (Exp b) (Exp a) (Exp a)

-- Using GADTs
-- data Exp a where
--   LitInt  :: Int  -> Exp Int
--   LitBool :: Bool -> Exp Bool
--   If      :: Exp Bool -> Exp a -> Exp a -> Exp a

eval :: Exp a -> a
eval e = case e of
  LitInt i   -> i
  LitBool b  -> b
  If b tr fl -> if eval b then eval tr else eval fl

In the presence of GADTs inference becomes intractable in many cases, often requiring an explicit annotation. For example f can either have T a -> [a] or T a -> [Int] and neither is principal.

data T :: * -> * where
  T1 :: Int -> T Int
  T2 :: T a

f (T1 n) = [n]
f T2     = []

Kind Signatures

Haskell’s kind system (i.e. the “type of the types”) is a system consisting the single kind * and an arrow kind ->.

κ : *
  | κ -> κ
Int :: *
Maybe :: * -> *
Either :: * -> * -> *

There are in fact some extensions to this system that will be covered later ( see: PolyKinds and Unboxed types in later sections ) but most kinds in everyday code are simply either stars or arrows.

With the KindSignatures extension enabled we can now annotate top level type signatures with their explicit kinds, bypassing the normal kind inference procedures.

{-# LANGUAGE KindSignatures #-}

id :: forall (a :: *). a -> a
id x = x

On top of default GADT declaration we can also constrain the parameters of the GADT to specific kinds. For basic usage Haskell’s kind inference can deduce this reasonably well, but combined with some other type system extensions that extend the kind system this becomes essential.

{-# Language GADTs #-}
{-# LANGUAGE KindSignatures #-}

data Term a :: * where
  Lit    :: a -> Term a
  Succ   :: Term Int -> Term Int
  IsZero :: Term Int -> Term Bool
  If     :: Term Bool -> Term a -> Term a -> Term a

data Vec :: * -> * -> * where
  Nil :: Vec n a
  Cons :: a -> Vec n a -> Vec n a

data Fix :: (* -> *) -> * where
  In :: f (Fix f) -> Fix f

Void

The Void type is the type with no inhabitants. It unifies only with itself.

Using a newtype wrapper we can create a type where recursion makes it impossible to construct an inhabitant.

-- Void :: Void -> Void
newtype Void = Void Void

Or using -XEmptyDataDecls we can also construct the uninhabited type equivalently as a data declaration with no constructors.

data Void

The only inhabitant of both of these types is a diverging term like (undefined).

Phantom Types

Phantom types are parameters that appear on the left hand side of a type declaration but which are not constrained by the values of the types inhabitants. They are effectively slots for us to encode additional information at the type-level.

import Data.Void

data Foo tag a = Foo a

combine :: Num a => Foo tag a -> Foo tag a -> Foo tag a
combine (Foo a) (Foo b) = Foo (a+b)

-- All identical at the value level, but differ at the type level.
a :: Foo () Int
a = Foo 1

b :: Foo t Int
b = Foo 1

c :: Foo Void Int
c = Foo 1

-- () ~ ()
example1 :: Foo () Int
example1 = combine a a

-- t ~ ()
example2 :: Foo () Int
example2 = combine a b

-- t0 ~ t1
example3 :: Foo t Int
example3 = combine b b

-- Couldn't match type `t' with `Void'
example4 :: Foo t Int
example4 = combine b c

Notice the type variable tag does not appear in the right hand side of the declaration. Using this allows us to express invariants at the type-level that need not manifest at the value-level. We’re effectively programming by adding extra information at the type-level.

Consider the case of using newtypes to statically distinguish between plaintext and cryptotext.

newtype Plaintext = Plaintext Text
newtype Cryptotext = Cryptotext Text

encrypt :: Key -> Plaintext -> Cryptotext
decrypt :: Key -> Cryptotext -> Plaintext

Using phantom types we use an extra parameter.

import Data.Text

data Cryptotext
data Plaintext

data Msg a = Msg Text

encrypt :: Msg Plaintext -> Msg Cryptotext
encrypt = undefined

decrypt :: Msg Cryptotext -> Msg Plaintext
decrypt = undefined

Using -XEmptyDataDecls can be a powerful combination with phantom types that contain no value inhabitants and are “anonymous types”.

{-# LANGUAGE EmptyDataDecls #-}

data Token a

The tagged library defines a similar Tagged newtype wrapper.

Typelevel Operations

With a richer language for datatypes we can express terms that witness the relationship between terms in the constructors, for example we can now express a term which expresses propositional equality between two types.

The type Eql a b is a proof that types a and b are equal, by pattern matching on the single Refl constructor we introduce the equality constraint into the body of the pattern match.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ExplicitForAll #-}

-- a ≡ b
data Eql a b where
  Refl :: Eql a a

-- Congruence
-- (f : A → B) {x y} → x ≡ y → f x ≡ f y
cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- Symmetry
-- {a b : A} → a ≡ b → a ≡ b
sym :: Eql a b -> Eql b a
sym Refl = Refl

-- Transitivity
-- {a b c : A} → a ≡ b → b ≡ c → a ≡ c
trans :: Eql a b -> Eql b c -> Eql a c
trans Refl Refl = Refl

-- Coerce one type to another given a proof of their equality.
-- {a b : A} → a ≡ b → a → b
castWith :: Eql a b -> a -> b
castWith Refl = id

-- Trivial cases
a :: forall n. Eql n n
a = Refl

b :: forall. Eql () ()
b = Refl

As of GHC 7.8 these constructors and functions are included in the Prelude in the Data.Type.Equality module.

Interpreters

The lambda calculus forms the theoretical and practical foundation for many languages. At the heart of every calculus is three components:

There are many different ways of modeling these constructions and data structure representations, but they all more or less contain these three elements. For example, a lambda calculus that uses String names on lambda binders and variables might be written like the following:

type Name = String

data Exp
  = Var Name
  | Lam Name Exp
  | App Exp Exp

A lambda expression in which all variables that appear in the body of the expression are referenced in an outer lambda binder is said to be closed while an expression with unbound free variables is open.

HOAS

Higher Order Abstract Syntax (HOAS) is a technique for implementing the lambda calculus in a language where the binders of the lambda expression map directly onto lambda binders of the host language ( i.e. Haskell ) to give us substitution machinery in our custom language by exploiting Haskell’s implementation.

{-# LANGUAGE GADTs #-}

data Expr a where
  Con :: a -> Expr a
  Lam :: (Expr a -> Expr b) -> Expr (a -> b)
  App :: Expr (a -> b) -> Expr a -> Expr b

i :: Expr (a -> a)
i = Lam (\x -> x)

k :: Expr (a -> b -> a)
k = Lam (\x -> Lam (\y -> x))

s :: Expr ((a -> b -> c) -> (a -> b) -> (a -> c))
s = Lam (\x -> Lam (\y -> Lam (\z -> App (App x z) (App y z))))

eval :: Expr a -> a
eval (Con v) = v
eval (Lam f) = \x -> eval (f (Con x))
eval (App e1 e2) = (eval e1) (eval e2)


skk :: Expr (a -> a)
skk = App (App s k) k

example :: Integer
example = eval skk 1
-- 1

Pretty printing HOAS terms can also be quite complicated since the body of the function is under a Haskell lambda binder.

PHOAS

A slightly different form of HOAS called PHOAS uses lambda datatype parameterized over the binder type. In this form evaluation requires unpacking into a separate Value type to wrap the lambda expression.

{-# LANGUAGE RankNTypes #-}

data ExprP a
  = VarP a
  | AppP (ExprP a) (ExprP a)
  | LamP (a -> ExprP a)
  | LitP Integer

data Value
  = VLit Integer
  | VFun (Value -> Value)

fromVFun :: Value -> (Value -> Value)
fromVFun val = case val of
  VFun f -> f
  _      -> error "not a function"

fromVLit :: Value -> Integer
fromVLit val = case val of
  VLit n -> n
  _      -> error "not an integer"

newtype Expr = Expr { unExpr :: forall a . ExprP a }

eval :: Expr -> Value
eval e = ev (unExpr e) where
  ev (LamP f)      = VFun(ev . f)
  ev (VarP v)      = v
  ev (AppP e1 e2)  = fromVFun (ev e1) (ev e2)
  ev (LitP n)      = VLit n

i :: ExprP a
i = LamP (\a -> VarP a)

k :: ExprP a
k = LamP (\x -> LamP (\y -> VarP x))

s :: ExprP a
s = LamP (\x -> LamP (\y -> LamP (\z -> AppP (AppP (VarP x) (VarP z)) (AppP (VarP y) (VarP z)))))

skk :: ExprP a
skk = AppP (AppP s k) k

example :: Integer
example = fromVLit $ eval $ Expr (AppP skk (LitP 3))

See:

Final Interpreters

Using typeclasses we can implement a final interpreter which models a set of extensible terms using functions bound to typeclasses rather than data constructors. Instances of the typeclass form interpreters over these terms.

For example we can write a small language that includes basic arithmetic, and then retroactively extend our expression language with a multiplication operator without changing the base. At the same time our interpreter logic remains invariant under extension with new expressions.

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE NoMonomorphismRestriction #-}

class Expr repr where
  lit :: Int -> repr
  neg :: repr -> repr
  add :: repr -> repr -> repr
  mul :: repr -> repr -> repr

instance Expr Int where
  lit n = n
  neg a = -a
  add a b = a + b
  mul a b = a * b

instance Expr String where
  lit n = show n
  neg a = "(-" ++ a ++ ")"
  add a b = "(" ++ a ++ " + " ++ b ++ ")"
  mul a b = "(" ++ a ++ " * " ++ b ++ ")"

class BoolExpr repr where
  eq :: repr -> repr -> repr
  tr :: repr
  fl :: repr

instance BoolExpr Int where
  eq a b = if a == b then tr else fl
  tr = 1
  fl = 0

instance BoolExpr String where
  eq a b = "(" ++ a ++ " == " ++ b ++ ")"
  tr = "true"
  fl = "false"

eval :: Int -> Int
eval = id

render :: String -> String
render = id

expr :: (BoolExpr repr, Expr repr) => repr
expr = eq (add (lit 1) (lit 2)) (lit 3)

result :: Int
result = eval expr
-- 1

string :: String
string = render expr
-- "((1 + 2) == 3)"

Finally Tagless

Writing an evaluator for the lambda calculus can likewise also be modeled with a final interpreter and a Identity functor.

import Prelude hiding (id)

class Expr rep where
  lam :: (rep a -> rep b) -> rep (a -> b)
  app :: rep (a -> b) -> (rep a -> rep b)
  lit :: a -> rep a

newtype Interpret a = R { reify :: a }

instance Expr Interpret where
  lam f   = R $ reify . f . R
  app f a = R $ reify f $ reify a
  lit     = R

eval :: Interpret a -> a
eval e = reify e

e1 :: Expr rep => rep Int
e1 = app (lam (\x -> x)) (lit 3)

e2 :: Expr rep => rep Int
e2 = app (lam (\x -> lit 4)) (lam $ \x -> lam $ \y -> y)

example1 :: Int
example1 = eval e1
-- 3

example2 :: Int
example2 = eval e2
-- 4

See: Typed Tagless Interpretations and Typed Compilation

Datatypes

The usual hand-wavy way of describing algebraic datatypes is to indicate the how natural correspondence between sum types, product types, and polynomial expressions arises.

data Void                       -- 0
data Unit     = Unit            -- 1
data Sum a b  = Inl a | Inr b   -- a + b
data Prod a b = Prod a b        -- a * b
type (->) a b = a -> b          -- b ^ a

Intuitively it follows the notion that the cardinality of set of inhabitants of a type can always be given as a function of the number of its holes. A product type admits a number of inhabitants as a function of the product (i.e. cardinality of the Cartesian product), a sum type as the sum of its holes and a function type as the exponential of the span of the domain and codomain.

-- 1 + A
data Maybe a = Nothing | Just a

Recursive types correspond to infinite series of these terms.

-- pseudocode

-- μX. 1 + X
data Nat a = Z | S Nat
Nat a = μ a. 1 + a
      = 1 + (1 + (1 + ...))

-- μX. 1 + A * X
data List a = Nil | Cons a (List a)
List a = μ a. 1 + a * (List a)
       = 1 + a + a^2 + a^3 + a^4 ...

-- μX. A + A*X*X
data Tree a f = Leaf a | Tree a f f
Tree a = μ a. 1 + a * (List a)
       = 1 + a^2 + a^4 + a^6 + a^8 ...

F-Algebras

The initial algebra approach differs from the final interpreter approach in that we now represent our terms as algebraic datatypes and the interpreter implements recursion and evaluation occurs through pattern matching.

type Algebra f a = f a -> a
type Coalgebra f a = a -> f a
newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
ana  :: Functor f => Coalgebra f a -> a -> Fix f
hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b

In Haskell a F-algebra is a functor f a together with a function f a -> a. A coalgebra reverses the function. For a functor f we can form its recursive unrolling using the recursive Fix newtype wrapper.

newtype Fix f = Fix { unFix :: f (Fix f) }

Fix :: f (Fix f) -> Fix f
unFix :: Fix f -> f (Fix f)
Fix f = f (f (f (f (f (f ( ... ))))))

newtype T b a = T (a -> b)

Fix (T a)
Fix T -> a
(Fix T -> a) -> a
(Fix T -> a) -> a -> a
...

In this form we can write down a generalized fold/unfold function that are datatype generic and written purely in terms of the recursing under the functor.

cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

We call these functions catamorphisms and anamorphisms. Notice especially that the types of these two functions simply reverse the direction of arrows. Interpreted in another way they transform an algebra/coalgebra which defines a flat structure-preserving mapping between Fix f f into a function which either rolls or unrolls the fixpoint. What is particularly nice about this approach is that the recursion is abstracted away inside the functor definition and we are free to just implement the flat transformation logic!

For example a construction of the natural numbers in this form:

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

type Algebra f a = f a -> a

type Coalgebra f a = a -> f a

newtype Fix f = Fix {unFix :: f (Fix f)}

-- catamorphism
cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

-- anamorphism
ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

-- hylomorphism
hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
hylo f g = cata f . ana g

type Nat = Fix NatF

data NatF a = S a | Z deriving (Eq, Show)

instance Functor NatF where
  fmap f Z = Z
  fmap f (S x) = S (f x)

plus :: Nat -> Nat -> Nat
plus n = cata phi
  where
    phi Z = n
    phi (S m) = s m

times :: Nat -> Nat -> Nat
times n = cata phi
  where
    phi Z = z
    phi (S m) = plus n m

int :: Nat -> Int
int = cata phi
  where
    phi Z = 0
    phi (S f) = 1 + f

nat :: Integer -> Nat
nat = ana (psi Z S)
  where
    psi f _ 0 = f
    psi _ f n = f (n -1)

z :: Nat
z = Fix Z

s :: Nat -> Nat
s = Fix . S

type Str = Fix StrF

data StrF x = Cons Char x | Nil

instance Functor StrF where
  fmap f (Cons a as) = Cons a (f as)
  fmap f Nil = Nil

nil :: Str
nil = Fix Nil

cons :: Char -> Str -> Str
cons x xs = Fix (Cons x xs)

str :: Str -> String
str = cata phi
  where
    phi Nil = []
    phi (Cons x xs) = x : xs

str' :: String -> Str
str' = ana (psi Nil Cons)
  where
    psi f _ [] = f
    psi _ f (a : as) = f a as

map' :: (Char -> Char) -> Str -> Str
map' f = hylo g unFix
  where
    g Nil = Fix Nil
    g (Cons a x) = Fix $ Cons (f a) x

type Tree a = Fix (TreeF a)

data TreeF a f = Leaf a | Tree a f f deriving (Show)

instance Functor (TreeF a) where
  fmap f (Leaf a) = Leaf a
  fmap f (Tree a b c) = Tree a (f b) (f c)

depth :: Tree a -> Int
depth = cata phi
  where
    phi (Leaf _) = 0
    phi (Tree _ l r) = 1 + max l r

example1 :: Int
example1 = int (plus (nat 125) (nat 25))
-- 150

Or for example an interpreter for a small expression language that depends on a scoping dictionary.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Control.Applicative
import qualified Data.Map as M

type Algebra f a = f a -> a
type Coalgebra f a = a -> f a

newtype Fix f = Fix { unFix :: f (Fix f) }

cata :: Functor f => Algebra f a -> Fix f -> a
cata alg = alg . fmap (cata alg) . unFix

ana :: Functor f => Coalgebra f a -> a -> Fix f
ana coalg = Fix . fmap (ana coalg) . coalg

hylo :: Functor f => Algebra f b -> Coalgebra f a -> a -> b
hylo f g = cata f . ana g

type Id = String
type Env = M.Map Id Int

type Expr = Fix ExprF
data ExprF a
  = Lit Int
  | Var Id
  | Add a a
  | Mul a a
  deriving (Show, Eq, Ord, Functor)

deriving instance Eq (f (Fix f)) => Eq (Fix f)
deriving instance Ord (f (Fix f)) => Ord (Fix f)
deriving instance Show (f (Fix f)) => Show (Fix f)

eval :: M.Map Id Int -> Fix ExprF -> Maybe Int
eval env = cata phi where
  phi ex = case ex of
    Lit c   -> pure c
    Var i   -> M.lookup i env
    Add x y -> liftA2 (+) x y
    Mul x y -> liftA2 (*) x y

expr :: Expr
expr = Fix (Mul n (Fix (Add x y)))
  where
    n = Fix (Lit 10)
    x = Fix (Var "x")
    y = Fix (Var "y")

env :: M.Map Id Int
env = M.fromList [("x", 1), ("y", 2)]

compose :: (f (Fix f) -> c) -> (a -> Fix f) -> a -> c
compose x y = x . unFix . y

example :: Maybe Int
example = eval env expr
-- Just 30

What is especially elegant about this approach is how naturally catamorphisms compose into efficient composite transformations.

compose :: Functor f => (f (Fix f) -> c) -> (a -> Fix f) -> a -> c
compose f g = f . unFix . g

Recursion Schemes & The Morphism Zoo

Recursion schemes are a generally way of classifying a families of traversal algorithms that modify data structures recursively. Recursion schemes give rise to a rich set of algebraic structures which can be composed to devise all sorts of elaborate term rewrite systems. Most applications of recursion schemes occur in the context of graph rewriting or abstract syntax tree manipulation.

Several basic recursion schemes form the foundation of these rules. Grossly, a anamorphism is an unfolding of a data structure into a list of terms, while a catamorphism is a is the refolding of a data structure from a list of terms.

Name Type Signature
Catamorphism cata :: (a -> b -> b) -> b -> [a] -> b
Anamorphism ana :: (b -> Maybe (a, b)) -> b -> [a]
Paramorphism para :: (a -> ([a], b) -> b) -> b -> [a] -> b
Apomorphism apo :: (b -> (a, Either [a] b)) -> b -> [a]
Hylomorphism hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b

For a Fix point type over a type with a Functor instance for the parameter f we can write down the recursion schemes as the following definitions:

-- | A fix-point type.
newtype Fix f = Fix { unFix :: f (Fix f) }

-- | Catamorphism or generic function fold.
cata :: Functor f => (f a -> a) -> (Fix f -> a)
cata f = f . fmap (cata f) . unFix

-- | Anamorphism or generic function unfold.
ana :: Functor f => (a -> f a) -> (a -> Fix f)
ana f = Fix . fmap (ana f) . f

-- | Hylomorphism
hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b
hylo f g = h where h = f . fmap h . g

-- Paramorphism
para :: Functor f => (f (Fix f, t) -> t) -> Fix f -> t
para f (Fix x) = psi (fmap l x) where
  l x = (x, para f x)

One can also construct monadic versions of these functions which have a result type inside of a monad. Instead of using function composition we use Kleisi composition.

-- Monadic catamorphism
cataM :: (Traversable f, Monad m) => (f a -> m a) -> Fix f -> m a
cataM f = f <=< traverse (cataM f) . unfix

The library recursion-schemes implements these basic recursion schemes as well as whole family of higher-order combinators off the shelf. These are implemented in terms of two typeclases Recursive and Corecursive which extend an instance of Functor with default methods for catamorphisms and anamorphisms. For the Fix type above these functions expand into the following definitions:

class Functor t => Recursive t where
  project :: t -> t t
  cata :: (t a -> a) -> t -> a
  cata f = c where c = f . fmap c . project

class Functor t => Corecursive t where
  embed :: t -> t t
  ana :: (a -> t a) -> a -> t
  ana g = a where a = embed . fmap a . g

-- Additional ListF helper
data ListF a b = Nil | Cons a b

The canonical example of a catamorphism is the factorial function which is a composition of a coalgebra which creates a list from n to 1 and an algebra which multiplies the resulting list to a single result:

import Data.Functor.Foldable

factorial :: Int -> Int
factorial = hylo alg coalg
  where
    coalg :: Int -> ListF Int Int
    coalg m
      | m <= 1 = Nil
      | otherwise = Cons m (m - 1)
    alg :: ListF Int Int -> Int
    alg Nil = 1
    alg (Cons a x) = a * x

Another example is unfolding of lambda calculus to perform a substitution over a variable. We can define a catamoprhism for traversing over the AST.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Control.Monad hiding (forM_, mapM, sequence)
import qualified Data.Map as M
import Data.Traversable
import Prelude hiding (mapM)

newtype Fix (f :: * -> *) = Fix {outF :: f (Fix f)}

-- Catamorphism
cata :: Functor f => (f a -> a) -> Fix f -> a
cata f = f . fmap (cata f) . outF

-- Monadic catamorphism
cataM :: (Traversable f, Monad m) => (f a -> m a) -> Fix f -> m a
cataM f = f <=< mapM (cataM f) . outF

data ExprF r
  = EVar String
  | EApp r r
  | ELam r r
  deriving (Show, Eq, Ord, Functor)

type Expr = Fix ExprF

instance Show (Fix ExprF) where
  show (Fix f) = show f

instance Eq (Fix ExprF) where
  Fix x == Fix y = x == y

instance Ord (Fix ExprF) where
  compare (Fix x) (Fix y) = compare x y

mkApp :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkApp x y = Fix (EApp x y)

mkVar :: String -> Fix ExprF
mkVar x = Fix (EVar x)

mkLam :: Fix ExprF -> Fix ExprF -> Fix ExprF
mkLam x y = Fix (ELam x y)

i :: Fix ExprF
i = mkLam (mkVar "x") (mkVar "x")

k :: Fix ExprF
k = mkLam (mkVar "x") $ mkLam (mkVar "y") $ (mkVar "x")

subst :: M.Map String (ExprF Expr) -> Expr -> Expr
subst env = cata alg
  where
    alg (EVar x) | Just e <- M.lookup x env = Fix e
    alg e = Fix e

Another use case would be to collect the free variables inside of the AST. This example use the recursion-schemes library.

{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE TypeFamilies #-}

import Data.Functor.Foldable

type Var = String

data Exp
  = Var Var
  | App Exp Exp
  | Lam [Var] Exp
  deriving (Show)

data ExpF a
  = VarF Var
  | AppF a a
  | LamF [Var] a
  deriving (Functor)

type instance Base Exp = ExpF

instance Recursive Exp where
  project (Var a) = VarF a
  project (App a b) = AppF a b
  project (Lam a b) = LamF a b

instance Corecursive Exp where
  embed (VarF a) = Var a
  embed (AppF a b) = App a b
  embed (LamF a b) = Lam a b

fvs :: Exp -> [Var]
fvs = cata phi
  where
    phi (VarF a) = [a]
    phi (AppF a b) = a ++ b
    phi (LamF a b) = foldr (filter . (/=)) a b

See:

Hint and Mueval

GHC itself can actually interpret arbitrary Haskell source on the fly by hooking into the GHC’s bytecode interpreter ( the same used for GHCi ). The hint package allows us to parse, typecheck, and evaluate arbitrary strings into arbitrary Haskell programs and evaluate them.

import Language.Haskell.Interpreter

foo :: Interpreter String
foo = eval "(\\x -> x) 1"

example :: IO (Either InterpreterError String)
example = runInterpreter foo

This is generally not a wise thing to build a library around, unless of course the purpose of the program is itself to evaluate arbitrary Haskell code ( something like an online Haskell shell or the likes ).

Both hint and mueval do effectively the same task, designed around slightly different internals of the GHC Api.

See:


Testing

Unit testing frameworks are an important component in the Haskell ecosystem. Program correctness is a central philosophical concept and unit testing forms the third part of the ecosystem that includes strong type system and property testing. Generally speaking unit tests tend to be of less importance in Haskell since the type system makes an enormous amount of invalid programs completely inexpressible by construction. Unit tests tend to be written later in the development lifecycle and generally tend to be about the core logic of the program and not the intermediate plumbing.

A prominent school of thought on Haskell library design tends to favor constructing programs built around strong equational laws which guarantee strong invariants about program behavior under composition. Many of the testing tools are built around this style of design.

QuickCheck

Probably the most famous Haskell library, QuickCheck is a testing framework. This is a framework for generating large random tests for arbitrary functions automatically based on the types of their arguments.

quickCheck :: Testable prop => prop -> IO ()
(==>) :: Testable prop => Bool -> prop -> Property
forAll :: (Show a, Testable prop) => Gen a -> (a -> prop) -> Property
choose :: Random a => (a, a) -> Gen a
import Test.QuickCheck

qsort :: [Int] -> [Int]
qsort []     = []
qsort (x:xs) = qsort lhs ++ [x] ++ qsort rhs
    where lhs = filter  (< x) xs
          rhs = filter (>= x) xs

prop_maximum ::  [Int] -> Property
prop_maximum xs = not (null xs) ==>
                  last (qsort xs) == maximum xs

main :: IO ()
main = quickCheck prop_maximum
$ runhaskell qcheck.hs
*** Failed! Falsifiable (after 3 tests and 4 shrinks):
[0]
[1]

$ runhaskell qcheck.hs
+++ OK, passed 1000 tests.

The test data generator can be extended with custom types and refined with predicates that restrict the domain of cases to test.

import Test.QuickCheck

data Color = Red | Green | Blue deriving Show

instance Arbitrary Color where
  arbitrary = do
    n <- choose (0,2) :: Gen Int
    return $ case n of
      0 -> Red
      1 -> Green
      2 -> Blue

example1 :: IO [Color]
example1 = sample' arbitrary
-- [Red,Green,Red,Blue,Red,Red,Red,Blue,Green,Red,Red]

See: QuickCheck: An Automatic Testing Tool for Haskell

SmallCheck

Like QuickCheck, SmallCheck is a property testing system but instead of producing random arbitrary test data it instead enumerates a deterministic series of test data to a fixed depth.

smallCheck :: Testable IO a => Depth -> a -> IO ()
list :: Depth -> Series Identity a -> [a]
sample' :: Gen a -> IO [a]
λ: list 3 series :: [Int]
[0,1,-1,2,-2,3,-3]

λ: list 3 series :: [Double]
[0.0,1.0,-1.0,2.0,0.5,-2.0,4.0,0.25,-0.5,-4.0,-0.25]

λ: list 3 series :: [(Int, String)]
[(0,""),(1,""),(0,"a"),(-1,""),(0,"b"),(1,"a"),(2,""),(1,"b"),(-1,"a"),(-2,""),(-1,"b"),(2,"a"),(-2,"a"),(2,"b"),(-2,"b")]

It is useful to generate test cases over all possible inputs of a program up to some depth.

import Test.SmallCheck

distrib :: Int -> Int -> Int -> Bool
distrib a b c = a * (b + c) == a * b + a * c

cauchy :: [Double] -> [Double] -> Bool
cauchy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

failure :: [Double] -> [Double] -> Bool
failure xs ys = abs (dot xs ys) <= (dot xs xs) * (dot ys ys)

dot :: Num a => [a] -> [a] -> a
dot xs ys = sum (zipWith (*) xs ys)

main :: IO ()
main = do
  putStrLn "Testing distributivity..."
  smallCheck 25 distrib

  putStrLn "Testing Cauchy-Schwarz..."
  smallCheck 4 cauchy

  putStrLn "Testing invalid Cauchy-Schwarz..."
  smallCheck 4 failure
$ runhaskell smallcheck.hs
Testing distributivity...
Completed 132651 tests without failure.

Testing Cauchy-Schwarz...
Completed 27556 tests without failure.

Testing invalid Cauchy-Schwarz...
Failed test no. 349.
there exist [1.0] [0.5] such that
  condition is false

Just like for QuickCheck we can implement series instances for our custom datatypes. For example there is no default instance for Vector, so let’s implement one:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}

import Test.SmallCheck
import Test.SmallCheck.Series
import Control.Applicative

import qualified Data.Vector as V

dot :: Num a => V.Vector a -> V.Vector a -> a
dot xs ys = V.sum (V.zipWith (*) xs ys)

cauchy :: V.Vector Double -> V.Vector Double -> Bool
cauchy xs ys = (abs (dot xs ys))^2 <= (dot xs xs) * (dot ys ys)

instance (Serial m a, Monad m) => Serial m (V.Vector a) where
  series = V.fromList <$> series

main :: IO ()
main = smallCheck 4 cauchy

SmallCheck can also use Generics to derive Serial instances, for example to enumerate all trees of a certain depth we might use:

{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics
import Test.SmallCheck.Series

data Tree a = Null | Fork (Tree a) a (Tree a)
    deriving (Show, Generic)

instance Serial m a => Serial m (Tree a)

example :: [Tree ()]
example = list 3 series

main = print example

QuickSpec

Using the QuickCheck arbitrary machinery we can also rather remarkably enumerate a large number of combinations of functions to try and deduce algebraic laws from trying out inputs for small cases. Of course the fundamental limitation of this approach is that a function may not exhibit any interesting properties for small cases or for simple function compositions. So in general case this approach won’t work, but practically it still quite useful.

{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}

import Data.List
import Data.Typeable
import QuickSpec hiding (arith, bools, lists)
import Test.QuickCheck.Arbitrary

type Var k a = (Typeable a, Arbitrary a, CoArbitrary a, k a)

listCons :: forall a. Var Ord a => a -> Sig
listCons a =
  background
    [ "[]" `fun0` ([] :: [a]),
      ":" `fun2` ((:) :: a -> [a] -> [a])
    ]

lists :: forall a. Var Ord a => a -> [Sig]
lists a =
  [ -- Names to print arbitrary variables
    funs',
    funvars',
    vars',
    -- Ambient definitions
    listCons a,
    -- Expressions to deduce properties of
    "sort" `fun1` (sort :: [a] -> [a]),
    "map" `fun2` (map :: (a -> a) -> [a] -> [a]),
    "id" `fun1` (id :: [a] -> [a]),
    "reverse" `fun1` (reverse :: [a] -> [a]),
    "minimum" `fun1` (minimum :: [a] -> a),
    "length" `fun1` (length :: [a] -> Int),
    "++" `fun2` ((++) :: [a] -> [a] -> [a])
  ]
  where
    funs' = funs (undefined :: a)
    funvars' = vars ["f", "g", "h"] (undefined :: a -> a)
    vars' = ["xs", "ys", "zs"] `vars` (undefined :: [a])

tvar :: A
tvar = undefined

main :: IO ()
main = quickSpec (lists tvar)

Running this we rather see it is able to deduce most of the laws for list functions.

$ runhaskell src/quickspec.hs
-- background functions --
id :: A -> A
(:) :: A -> [A] -> [A]
(.) :: (A -> A) -> (A -> A) -> A -> A
[] :: [A]
-- variables --
f, g, h :: A -> A
xs, ys, zs :: [A]
== Equations about map ==
  1: map f [] == []
  2: map id xs == xs
  3: map (f.g) xs == map f (map g xs)
== Equations about minimum ==
  4: minimum [] == undefined
== Equations about (++) ==
  5: xs++[] == xs
  6: []++xs == xs
  7: (xs++ys)++zs == xs++(ys++zs)
== Equations about sort ==
  8: sort [] == []
  9: sort (sort xs) == sort xs
== Equations about id ==
 10: id xs == xs
== Equations about reverse ==
 11: reverse [] == []
 12: reverse (reverse xs) == xs
== Equations about several functions ==
 13: minimum (xs++ys) == minimum (ys++xs)
 14: length (map f xs) == length xs
 15: length (xs++ys) == length (ys++xs)
 16: sort (xs++ys) == sort (ys++xs)
 17: map f (reverse xs) == reverse (map f xs)
 18: minimum (sort xs) == minimum xs
 19: minimum (reverse xs) == minimum xs
 20: minimum (xs++xs) == minimum xs
 21: length (sort xs) == length xs
 22: length (reverse xs) == length xs
 23: sort (reverse xs) == sort xs
 24: map f xs++map f ys == map f (xs++ys)
 25: reverse xs++reverse ys == reverse (ys++xs)

Keep in mind the rather remarkable fact that this is all deduced automatically from the types alone!

Tasty

Tasty is the commonly used unit testing framework. It combines all of the testing frameworks (Quickcheck, SmallCheck, HUnit) into a common API for forming runnable batches of tests and collecting the results.

import Test.Tasty
import Test.Tasty.HUnit
import Test.Tasty.QuickCheck
import qualified Test.Tasty.SmallCheck as SC

arith :: Integer -> Integer -> Property
arith x y = (x > 0) && (y > 0) ==> (x+y)^2 > x^2 + y^2

negation :: Integer -> Bool
negation x = abs (x^2) >= x

suite :: TestTree
suite = testGroup "Test Suite" [
    testGroup "Units"
      [ testCase "Equality" $ True @=? True
      , testCase "Assertion" $ assert $ (length [1,2,3]) == 3
      ],

    testGroup "QuickCheck tests"
      [ testProperty "Quickcheck test" arith
      ],

    testGroup "SmallCheck tests"
      [ SC.testProperty "Negation" negation
      ]
  ]

main :: IO ()
main = defaultMain suite
$ runhaskell TestSuite.hs
Unit tests
  Units
    Equality:        OK
    Assertion:       OK
  QuickCheck tests
    Quickcheck test: OK
      +++ OK, passed 100 tests.
  SmallCheck tests
    Negation:        OK
      11 tests completed

Silently

Often in the process of testing IO heavy code we’ll need to redirect stdout to compare it some known quantity. The silently package allows us to capture anything done to stdout across any library inside of IO block and return the result to the test runner.

capture :: IO a -> IO (String, a)
import Test.Tasty
import Test.Tasty.HUnit
import System.IO.Silently

test :: Int -> IO ()
test n = print (n * n)

testCapture n = do
  (stdout, result) <- capture (test n)
  assert (stdout == show (n*n) ++ "\n")

suite :: TestTree
suite = testGroup "Test Suite" [
    testGroup "Units"
      [ testCase "Equality" $ testCapture 10
      ]
  ]

main :: IO ()
main = defaultMain suite

Type Families

Type families are a powerful extension the Haskell type system, developed in 2005, that provide type-indexed data types and named functions on types. This allows a whole new level of computation to occur at compile-time and opens an entire arena of type-level abstractions that were previously impossible to express. Type families proved to be nearly as fruitful as typeclasses and indeed, many previous approaches to type-level programming using classes are achieved much more simply with type families.

MultiParam Typeclasses

Resolution of vanilla Haskell 98 typeclasses proceeds via very simple context reduction that minimizes interdependency between predicates, resolves superclasses, and reduces the types to head normal form. For example:

(Eq [a], Ord [a]) => [a]
==> Ord a => [a]

If a single parameter typeclass expresses a property of a type ( i.e. whether it’s in a class or not in class ) then a multiparameter typeclass expresses relationships between types. For example if we wanted to express the relation that a type can be converted to another type we might use a class like:

{-# LANGUAGE MultiParamTypeClasses #-}

import Data.Char

class Convertible a b where
  convert :: a -> b

instance Convertible Int Integer where
  convert = toInteger

instance Convertible Int Char where
  convert = chr

instance Convertible Char Int where
  convert = ord

Of course now our instances for Convertible Int are not unique anymore, so there no longer exists a nice procedure for determining the inferred type of b from just a. To remedy this let’s add a functional dependency a -> b, which tells GHC that an instance a uniquely determines the instance that b can be. So we’ll see that our two instances relating Int to both Integer and Char conflict.

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}


import Data.Char

class Convertible a b | a -> b where
  convert :: a -> b

instance Convertible Int Char where
  convert = chr

instance Convertible Char Int where
  convert = ord
Functional dependencies conflict between instance declarations:
  instance Convertible Int Integer
  instance Convertible Int Char

Now there’s a simpler procedure for determining instances uniquely and multiparameter typeclasses become more usable and inferable again. Effectively a functional dependency | a -> b says that we can’t define multiple multiparamater typeclass instances with the same a but different b.

λ: convert (42 :: Int)
'*'
λ: convert '*'
42

Now let’s make things not so simple. Turning on UndecidableInstances loosens the constraint on context reduction that can only allow constraints of the class to become structural smaller than its head. As a result implicit computation can now occur within in the type class instance search. Combined with a type-level representation of Peano numbers we find that we can encode basic arithmetic at the type-level.

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE UndecidableInstances #-}

data Z
data S n

type Zero  = Z
type One   = S Zero
type Two   = S One
type Three = S Two
type Four  = S Three

zero :: Zero
zero = undefined

one :: One
one = undefined

two :: Two
two = undefined

three :: Three
three = undefined

four :: Four
four = undefined

class Eval a where
  eval :: a -> Int

instance Eval Zero where
  eval _ = 0

instance Eval n => Eval (S n) where
  eval m = 1 + eval (prev m)

class Pred a b | a -> b where
  prev :: a -> b

instance Pred Zero Zero where
  prev = undefined

instance Pred (S n) n where
  prev = undefined

class Add a b c | a b -> c where
  add :: a -> b -> c

instance Add Zero a a where
  add = undefined

instance Add a b c => Add (S a) b (S c) where
  add = undefined

f :: Three
f = add one two

g :: S (S (S (S Z)))
g = add two two

h :: Int
h = eval (add three four)

If the typeclass contexts look similar to Prolog you’re not wrong, if one reads the contexts qualifier (=>) backwards as turnstiles :- then it’s precisely the same equations.

add(0, A, A).
add(s(A), B, s(C)) :- add(A, B, C).

pred(0, 0).
pred(S(A), A).

This is kind of abusing typeclasses and if used carelessly it can fail to terminate or overflow at compile-time. UndecidableInstances shouldn’t be turned on without careful forethought about what it implies.

<interactive>:1:1:
    Context reduction stack overflow; size = 201

Type Families

Type families allows us to write functions in the type domain which take types as arguments which can yield either types or values indexed on their arguments which are evaluated at compile-time in during typechecking. Type families come in two varieties: data families and type synonym families.

First let’s look at type synonym families, there are two equivalent syntactic ways of constructing them. Either as associated type families declared within a typeclass or as standalone declarations at the toplevel. The following forms are semantically equivalent, although the unassociated form is strictly more general:

-- (1) Unassociated form
type family Rep a
type instance Rep Int = Char
type instance Rep Char = Int

class Convertible a where
  convert :: a -> Rep a

instance Convertible Int where
  convert = chr

instance Convertible Char where
  convert = ord



-- (2) Associated form
class Convertible a where
  type Rep a
  convert :: a -> Rep a

instance Convertible Int where
  type Rep Int = Char
  convert = chr

instance Convertible Char where
  type Rep Char = Int
  convert = ord

Using the same example we used for multiparameter + functional dependencies illustration we see that there is a direct translation between the type family approach and functional dependencies. These two approaches have the same expressive power.

An associated type family can be queried using the :kind! command in GHCi.

λ: :kind! Rep Int
Rep Int :: *
= Char
λ: :kind! Rep Char
Rep Char :: *
= Int

Data families on the other hand allow us to create new type parameterized data constructors. Normally we can only define typeclasses functions whose behavior results in a uniform result which is purely a result of the typeclasses arguments. With data families we can allow specialized behavior indexed on the type.

For example if we wanted to create more complicated vector structures ( bit-masked vectors, vectors of tuples, … ) that exposed a uniform API but internally handled the differences in their data layout we can use data families to accomplish this:

{-# LANGUAGE TypeFamilies #-}

import qualified Data.Vector.Unboxed as V

data family Array a
data instance Array Int       = IArray (V.Vector Int)
data instance Array Bool      = BArray (V.Vector Bool)
data instance Array (a,b)     = PArray (Array a) (Array b)
data instance Array (Maybe a) = MArray (V.Vector Bool) (Array a)

class IArray a where
  index :: Array a -> Int -> a

instance IArray Int where
  index (IArray xs) i = xs V.! i

instance IArray Bool where
  index (BArray xs) i = xs V.! i

-- Vector of pairs
instance (IArray a, IArray b) => IArray (a, b) where
  index (PArray xs ys) i = (index xs i, index ys i)

-- Vector of missing values
instance (IArray a) => IArray (Maybe a) where
  index (MArray bm xs) i =
    case bm V.! i of
      True  -> Nothing
      False -> Just $ index xs i

Injectivity

The type level functions defined by type-families are not necessarily injective, the function may map two distinct input types to the same output type. This differs from the behavior of type constructors ( which are also type-level functions ) which are injective.

For example for the constructor Maybe, Maybe t1 = Maybe t2 implies that t1 = t2.

data Maybe a = Nothing | Just a
-- Maybe a ~ Maybe b  implies  a ~ b

type instance F Int = Bool
type instance F Char = Bool

-- F a ~ F b does not imply  a ~ b, in general

Roles

Roles are a further level of specification for type variables parameters of datatypes.

They were added to the language to address a rather nasty and long-standing bug around the correspondence between a newtype and its runtime representation. The fundamental distinction that roles introduce is there are two notions of type equality. Two types are nominally equal when they have the same name. This is the usual equality in Haskell or Core. Two types are representationally equal when they have the same representation. (If a type is higher-kinded, all nominally equal instantiations lead to representationally equal types.)

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}

newtype Age = MkAge {unAge :: Int}

type family Inspect x

type instance Inspect Age = Int

type instance Inspect Int = Bool

class Boom a where
  boom :: a -> Inspect a

instance Boom Int where
  boom = (== 0)

deriving instance Boom Age

-- GHC 7.6.3 exhibits undefined behavior
failure = boom (MkAge 3)
-- -6341068275333450897

Roles are normally inferred automatically, but with the RoleAnnotations extension they can be manually annotated. Except in rare cases this should not be necessary although it is helpful to know what is going on under the hood.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE RoleAnnotations #-}

data Nat = Zero | Suc Nat

type role Vec nominal representational
data Vec :: Nat -> * -> * where
  Nil  :: Vec Zero a
  (:*) :: a -> Vec n a -> Vec (Suc n) a

type role App representational nominal
data App (f :: k -> *) (a :: k) = App (f a)

type role Mu nominal nominal
data Mu (f :: (k -> *) -> k -> *) (a :: k) = Roll (f (Mu f) a)

type role Proxy phantom
data Proxy (a :: k) = Proxy

With:

coerce :: Coercible * a b => a -> b
class (~R#) k k a b => Coercible k a b

See:

NonEmpty

Rather than having degenerate (and often partial) cases of many of the Prelude functions to accommodate the null case of lists, it is sometimes preferable to statically enforce empty lists from even being constructed as an inhabitant of a type.

infixr 5 :|, <|
data NonEmpty a = a :| [a]

head :: NonEmpty a -> a
toList :: NonEmpty a -> [a]
fromList :: [a] -> NonEmpty a
head :: NonEmpty a -> a
head ~(a :| _) = a
import Data.List.NonEmpty
import Prelude hiding (head, tail, foldl1)
import Data.Foldable (foldl1)

a :: NonEmpty Integer
a = fromList [1,2,3]
-- 1 :| [2,3]

b :: NonEmpty Integer
b = 1 :| [2,3]
-- 1 :| [2,3]

c :: NonEmpty Integer
c = fromList []
-- *** Exception: NonEmpty.fromList: empty list

d :: Integer
d = foldl1 (+) $ fromList [1..100]
-- 5050

Manual Proofs

One of most deep results in computer science, the Curry–Howard correspondence, is the relation that logical propositions can be modeled by types and instantiating those types constitute proofs of these propositions. Programs are proofs and proofs are programs.

Types Logic
A proposition
a : A proof
B(x) predicate
Void
Unit
A + B A ∨ B
A × B A ∧ B
A -> B A ⇒ B

In dependently typed languages we can exploit this result to its full extent, in Haskell we don’t have the strength that dependent types provide but can still prove trivial results. For example, now we can model a type level function for addition and provide a small proof that zero is an additive identity.

P 0                   [ base step ]
∀n. P n  → P (1+n)    [ inductive step ]
-------------------
∀n. P(n)
Axiom 1: a + 0 = a
Axiom 2: a + suc b = suc (a + b)

  0 + suc a
= suc (0 + a)  [by Axiom 2]
= suc a        [Induction hypothesis]

Translated into Haskell our axioms are simply type definitions and recursing over the inductive datatype constitutes the inductive step of our proof.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeOperators #-}

data Z
data S n

data SNat n where
  Zero :: SNat Z
  Succ :: SNat n -> SNat (S n)

data Eql a b where
  Refl :: Eql a a

type family Add m n
type instance Add Z n = n
type instance Add (S m) n = S (Add m n)

add :: SNat n -> SNat m -> SNat (Add n m)
add Zero     m = m
add (Succ n) m = Succ (add n m)

cong :: Eql a b -> Eql (f a) (f b)
cong Refl = Refl

-- ∀n. 0 + suc n = suc n
plus_suc :: forall n.  SNat n
         -> Eql (Add Z (S n)) (S n)
plus_suc Zero = Refl
plus_suc (Succ n) = cong (plus_suc n)

-- ∀n. 0 + n = n
plus_zero :: forall n. SNat n
         -> Eql (Add Z n) n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

Using the TypeOperators extension we can also use infix notation at the type-level.

data a :=: b where
  Refl :: a :=: a

cong :: a :=: b -> (f a) :=: (f b)
cong Refl = Refl

type family (n :: Nat) :+ (m :: Nat) :: Nat
type instance Zero     :+ m = m
type instance (Succ n) :+ m = Succ (n :+ m)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+ (S m)) :=: (S (n :+ m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

Constraint Kinds

GHC’s implementation also exposes the predicates that bound quantifiers in Haskell as types themselves, with the -XConstraintKinds extension enabled. Using this extension we work with constraints as first class types.

Num :: * -> Constraint
Odd :: * -> Constraint
type T1 a = (Num a, Ord a)

The empty constraint set is indicated by () :: Constraint.

For a contrived example if we wanted to create a generic Sized class that carried with it constraints on the elements of the container in question we could achieve this quite simply using type families.

{-# LANGUAGE ConstrainedClassMethods #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}

import Data.HashSet
import Data.Hashable
import GHC.Exts (Constraint)

type family Con a :: Constraint

type instance Con [a] = (Ord a, Eq a)

type instance Con (HashSet a) = (Hashable a)

class Sized a where
  gsize :: Con a => a -> Int

instance Sized [a] where
  gsize = length

instance Sized (HashSet a) where
  gsize = size

One use-case of this is to capture the typeclass dictionary constrained by a function and reify it as a value.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE KindSignatures #-}

import GHC.Exts (Constraint)

data Dict :: Constraint -> * where
  Dict :: (c) => Dict c

dShow :: Dict (Show a) -> a -> String
dShow Dict x = show x

dEqNum :: Dict (Eq a, Num a) -> a -> Bool
dEqNum Dict x = x == 0


fShow :: String
fShow = dShow Dict 10

fEqual :: Bool
fEqual = dEqNum Dict 0

TypeFamilyDependencies

Type families historically have not been injective, i.e. they are not guaranteed to maps distinct elements of its arguments to the same element of its result. The syntax is similar to the multiparmater typeclass functional dependencies in that the resulting type is uniquely determined by a set of the type families parameters.

{-# LANGUAGE XTypeFamilyDependencies #-}

type family F a b c = (result :: k) | result -> a b c
type instance F Int  Char Bool = Bool
type instance F Char Bool Int  = Int
type instance F Bool Int  Char = Char

See:

Promotion

Higher Kinded Types

What are higher kinded types?

The kind system in Haskell is unique by contrast with most other languages in that it allows datatypes to be constructed which take types and type constructor to other types. Such a system is said to support higher kinded types.

All kind annotations in Haskell necessarily result in a kind * although any terms to the left may be higher-kinded (* -> *).

The common example is the Monad which has kind * -> *. But we have also seen this higher-kindedness in free monads.

data Free f a where
  Pure :: a -> Free f a
  Free :: f (Free f a) -> Free f a

data Cofree f a where
  Cofree :: a -> f (Cofree f a) -> Cofree f a
Free :: (* -> *) -> * -> *
Cofree :: (* -> *) -> * -> *

For instance Cofree Maybe a for some monokinded type a models a non-empty list with Maybe :: * -> *.

-- Cofree Maybe a is a non-empty list
testCofree :: Cofree Maybe Int
testCofree = (Cofree 1 (Just (Cofree 2 Nothing)))

Kind Polymorphism

The regular value level function which takes a function and applies it to an argument is universally generalized over in the usual Hindley-Milner way.

app :: forall a b. (a -> b) -> a -> b
app f a = f a

But when we do the same thing at the type-level we see we lose information about the polymorphism of the constructor applied.

-- TApp :: (* -> *) -> * -> *
data TApp f a = MkTApp (f a)

Turning on -XPolyKinds allows polymorphic variables at the kind level as well.

-- Default:   (* -> *) -> * -> *
-- PolyKinds: (k -> *) -> k -> *
data TApp f a = MkTApp (f a)

-- Default:   ((* -> *) -> (* -> *)) -> (* -> *)
-- PolyKinds: ((k -> *) -> (k -> *)) -> (k -> *)
data Mu f a = Roll (f (Mu f) a)

-- Default:   * -> *
-- PolyKinds: k -> *
data Proxy a = Proxy

Using the polykinded Proxy type allows us to write down type class functions over constructors of arbitrary kind arity.

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}

data Proxy a = Proxy
data Rep = Rep

class PolyClass a where
  foo :: Proxy a -> Rep
  foo = const Rep

-- () :: *
-- [] :: * -> *
-- Either :: * -> * -> *

instance PolyClass ()
instance PolyClass []
instance PolyClass Either

For example we can write down the polymorphic S K combinators at the type level now.

{-# LANGUAGE PolyKinds #-}

newtype I (a :: *) = I a
newtype K (a :: *) (b :: k) = K a
newtype Flip (f :: k1 -> k2 -> *) (x :: k2) (y :: k1) = Flip (f y x)

unI :: I a -> a
unI (I x) = x

unK :: K a b -> a
unK (K x) = x

unFlip :: Flip f x y -> f y x
unFlip (Flip x) = x

Data Kinds

The -XDataKinds extension allows us to refer to constructors at the value level and the type level. Consider a simple sum type:

data S a b = L a | R b

-- S :: * -> * -> *
-- L :: a -> S a b
-- R :: b -> S a b

With the extension enabled we see that our type constructors are now automatically promoted so that L or R can be viewed as both a data constructor of the type S or as the type L with kind S.

{-# LANGUAGE DataKinds #-}

data S a b = L a | R b

-- S :: * -> * -> *
-- L :: * -> S * *
-- R :: * -> S * *

Promoted data constructors can referred to in type signatures by prefixing them with a single quote. Also of importance is that these promoted constructors are not exported with a module by default, but type synonym instances can be created for the ticked promoted types and exported directly.

data Foo = Bar | Baz
type Bar = 'Bar
type Baz = 'Baz

Combining this with type families we see we can write meaningful, type-level functions by lifting types to the kind level.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}

import Prelude hiding (Bool(..))

data Bool = False | True

type family Not (a :: Bool) :: Bool

type instance Not True = False
type instance Not False = True

false :: Not True ~ False => a
false = undefined

true :: Not False ~ True => a
true = undefined

-- Fails at compile time.
-- Couldn't match type 'False with 'True
invalid :: Not True ~ True => a
invalid = undefined

Size-Indexed Vectors

Using this new structure we can create a Vec type which is parameterized by its length as well as its element type now that we have a kind language rich enough to encode the successor type in the kind signature of the generalized algebraic datatype.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

data Nat = Z | S Nat deriving (Eq, Show)

type Zero  = Z
type One   = S Zero
type Two   = S One
type Three = S Two
type Four  = S Three
type Five  = S Four

data Vec :: Nat -> * -> * where
  Nil :: Vec Z a
  Cons :: a -> Vec n a -> Vec (S n) a

instance Show a => Show (Vec n a) where
  show Nil         = "Nil"
  show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

class FromList n where
  fromList :: [a] -> Vec n a

instance FromList Z where
  fromList [] = Nil

instance FromList n => FromList (S n) where
  fromList (x:xs) = Cons x $ fromList xs


lengthVec :: Vec n a -> Nat
lengthVec Nil = Z
lengthVec (Cons x xs) = S (lengthVec xs)

zipVec :: Vec n a -> Vec n b -> Vec n (a,b)
zipVec Nil Nil = Nil
zipVec (Cons x xs) (Cons y ys) = Cons (x,y) (zipVec xs ys)

vec4 :: Vec Four Int
vec4 = fromList [0, 1, 2, 3]

vec5 :: Vec Five Int
vec5 = fromList [0, 1, 2, 3, 4]


example1 :: Nat
example1 = lengthVec vec4
-- S (S (S (S Z)))

example2 :: Vec Four (Int, Int)
example2 = zipVec vec4 vec4
-- Cons (0,0) (Cons (1,1) (Cons (2,2) (Cons (3,3) (Nil))))

So now if we try to zip two Vec types with the wrong shape then we get an error at compile-time about the off-by-one error.

example2 = zipVec vec4 vec5
-- Couldn't match type 'S 'Z with 'Z
-- Expected type: Vec Four Int
--   Actual type: Vec Five Int

The same technique we can use to create a container which is statically indexed by an empty or non-empty flag, such that if we try to take the head of an empty list we’ll get a compile-time error, or stated equivalently we have an obligation to prove to the compiler that the argument we hand to the head function is non-empty.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}

data Size = Empty | NonEmpty

data List a b where
  Nil :: List Empty a
  Cons :: a -> List b a -> List NonEmpty a

head' :: List NonEmpty a -> a
head' (Cons x _) = x

example1 :: Int
example1 = head' (1 `Cons` (2 `Cons` Nil))

-- Cannot match type Empty with NonEmpty
example2 :: Int
example2 = head' Nil
Couldn't match type None with Many
Expected type: List NonEmpty Int
  Actual type: List Empty Int

See:

Typelevel Numbers

GHC’s type literals can also be used in place of explicit Peano arithmetic.

GHC 7.6 is very conservative about performing reduction, GHC 7.8 is much less so and will can solve many typelevel constraints involving natural numbers but sometimes still needs a little coaxing.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}

import GHC.TypeLits

data Vec :: Nat -> * -> * where
  Nil :: Vec 0 a
  Cons :: a -> Vec n a -> Vec (1 + n) a

-- GHC 7.6 will not reduce
-- vec3 :: Vec (1 + (1 + (1 + 0))) Int

vec3 :: Vec 3 Int
vec3 = 0 `Cons` (1 `Cons` (2 `Cons` Nil))
{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}

import GHC.TypeLits
import Data.Type.Equality

data Foo :: Nat -> * where
  Small    :: (n <= 2)  => Foo n
  Big      :: (3 <= n) => Foo n

  Empty    :: ((n == 0) ~ True) => Foo n
  NonEmpty :: ((n == 0) ~ False) => Foo n

big :: Foo 10
big = Big

small :: Foo 2
small = Small

empty :: Foo 0
empty = Empty

nonempty :: Foo 3
nonempty = NonEmpty

See: Type-Level Literals

Typelevel Strings

Since GHC 8.0 we have been able to work with typelevel strings values represented at the typelevel as Symbol with kind Symbol. The GHC.TypeLits module defines a set of a typeclases for lifting these values to and from the value level and comparing and computing over the values at typelevel.

symbolVal :: forall n proxy. KnownSymbol n => proxy n -> String
type family AppendSymbol (m :: Symbol) (n :: Symbol) :: Symbol
type family CmpSymbol (m :: Symbol) (n :: Symbol) :: Ordering
sameSymbol :: (KnownSymbol a, KnownSymbol b) => Proxy a -> Proxy b -> Maybe (a :~: b)

These can be used to tag specific data at the typelevel with compile-time information encoded in the strings. For example we can construct a simple unit system which allows us to attach units to numerical quantities and perform basic dimensional analysis.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

import GHC.TypeLits

data Tagged (l :: Symbol) a = Tag a
  deriving (Show)

m :: Tagged "m" Double
m = Tag 10.0

s :: Tagged "s" Double
s = Tag 20.0

divUnits ::
  Fractional a =>
  Tagged u1 a ->
  Tagged u2 a ->
  Tagged (u1 `AppendSymbol` u2) a
divUnits (Tag x) (Tag y) = Tag (x / y)

addUnits ::
  (Num a, u1 `CmpSymbol` u2 ~ 'EQ) =>
  Tagged u1 a ->
  Tagged u2 a ->
  Tagged u1 a
addUnits (Tag x) (Tag y) = Tag (x + y)

Custom Errors

As of GHC 8.0 we have the capacity to provide custom type error using type families. The messages themselves hook into GHC and are expressed using the small datatype found in GHC.TypeLits

data ErrorMessage where
  Text :: Symbol -> ErrorMessage
  ShowType :: t -> ErrorMessage

  -- Put two messages next to each other
  (:<>:) :: ErrorMessage -> ErrorMessage -> ErrorMessage

  -- Put two messages on top of each other
  (:$$:) :: ErrorMessage -> ErrorMessage -> ErrorMessage

If one of these expressions is found in the signature of an expression GHC reports an error message of the form:

example.hs:1:1: error:
My custom error message line 1.
My custom error message line 2.
In the expression: example
      In an equation for ‘foo’: foo = ECoerce (EFloat 3) (EInt 4)
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

instance-- Error Message

  TypeError
    ( Text "Equality is not defined for functions"
        :$$: (ShowType a :<>: Text " -> " :<>: ShowType b)
    ) =>
  -- Instance head
  Eq (a -> b)
  where
  (==) = undefined

-- Fail when we try to equate two functions
example = id == id

A less contrived example would be creating a type-safe embedded DSL that enforces invariants about the semantics at the type-level. We’ve been able to do this sort of thing using GADTs and type-families for a while but the error reporting has been horrible. With 8.0 we can have type-families that emit useful type errors that reflect what actually goes wrong and integrate this inside of GHC.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits

type family Coerce a b where
  Coerce Int Int     = Int
  Coerce Float Float = Float
  Coerce Int Float   = Float
  Coerce Float Int   = TypeError (Text "Cannot cast to smaller type")

data Expr a where
  EInt    :: Int -> Expr Int
  EFloat  :: Float -> Expr Float
  ECoerce :: Expr b -> Expr c -> Expr (Coerce b c)

foo :: Expr Int
foo = ECoerce (EFloat 3) (EInt 4)

Type Equality

Continuing with the theme of building more elaborate proofs in Haskell, GHC 7.8 recently shipped with the Data.Type.Equality module which provides us with an extended set of type-level operations for expressing the equality of types as values, constraints, and promoted booleans.

(~)   :: k -> k -> Constraint
(==)  :: k -> k -> Bool
(<=)  :: Nat -> Nat -> Constraint
(<=?) :: Nat -> Nat -> Bool
(+)   :: Nat -> Nat -> Nat
(-)   :: Nat -> Nat -> Nat
(*)   :: Nat -> Nat -> Nat
(^)   :: Nat -> Nat -> Nat
(:~:)     :: k -> k -> *
Refl      :: a1 :~: a1
sym       :: (a :~: b) -> b :~: a
trans     :: (a :~: b) -> (b :~: c) -> a :~: c
castWith  :: (a :~: b) -> a -> b
gcastWith :: (a :~: b) -> (a ~ b => r) -> r

With this we have a much stronger language for writing restrictions that can be checked at a compile-time, and a mechanism that will later allow us to write more advanced proofs.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ConstraintKinds #-}

import GHC.TypeLits
import Data.Type.Equality

type Not a b = ((b == a) ~ False)

restrictUnit :: Not () a => a -> a
restrictUnit = id

restrictChar :: Not Char a => a -> a
restrictChar = id

Proxies

Using kind polymorphism with phantom types allows us to express the Proxy type which is inhabited by a single constructor with no arguments but with a polykinded phantom type variable which carries an arbitrary type.

{-# LANGUAGE PolyKinds #-}

-- | A concrete, poly-kinded proxy type
data Proxy t = Proxy
import Data.Proxy

a :: Proxy ()
a = Proxy

b :: Proxy 3
b = Proxy

c :: Proxy "symbol"
c = Proxy

d :: Proxy Maybe
d = Proxy

e :: Proxy (Maybe ())
e = Proxy

In cases where we’d normally pass around a undefined as a witness of a typeclass dictionary, we can instead pass a Proxy object which carries the phantom type without the need for the bottom. Using scoped type variables we can then operate with the phantom parameter and manipulate wherever is needed.

t1 :: a
t1 = (undefined :: a)

t2 :: Proxy a
t2 Proxy :: Proxy a

We’ve seen constructors promoted using DataKinds, but just like at the value-level GHC also allows us some syntactic sugar for list and tuples instead of explicit cons’ing and pair’ing. This is enabled with the -XTypeOperators extension, which introduces list syntax and tuples of arbitrary arity at the type-level.

data HList :: [*] -> * where
  HNil  :: HList '[]
  HCons :: a -> HList t -> HList (a ': t)

data Tuple :: (*,*) -> * where
  Tuple :: a -> b -> Tuple '(a,b)

Using this we can construct all variety of composite type-level objects.

λ: :kind 1
1 :: Nat

λ: :kind "foo"
"foo" :: Symbol

λ: :kind [1,2,3]
[1,2,3] :: [Nat]

λ: :kind [Int, Bool, Char]
[Int, Bool, Char] :: [*]

λ: :kind Just [Int, Bool, Char]
Just [Int, Bool, Char] :: Maybe [*]

λ: :kind '("a", Int)
(,) Symbol *

λ: :kind [ '("a", Int), '("b", Bool) ]
[ '("a", Int), '("b", Bool) ] :: [(,) Symbol *]

Singleton Types

A singleton type is a type with a single value inhabitant. Singleton types can be constructed in a variety of ways using GADTs or with data families.

data instance Sing (a :: Nat) where
  SZ :: Sing 'Z
  SS :: Sing n -> Sing ('S n)

data instance Sing (a :: Maybe k) where
  SNothing :: Sing 'Nothing
  SJust :: Sing x -> Sing ('Just x)

data instance Sing (a :: Bool) where
  STrue :: Sing True
  SFalse :: Sing False

Promoted Naturals

Value-level Type-level Models
SZ Sing 'Z 0
SS SZ Sing ('S 'Z) 1
SS (SS SZ) Sing ('S ('S 'Z)) 2

Promoted Booleans

Value-level Type-level Models
SFalse Sing 'False False
STrue Sing 'True True

Promoted Maybe

Value-level Type-level Models
SJust a Sing (SJust 'a) Just a
SNothing Sing Nothing Nothing

Singleton types are an integral part of the small cottage industry of faking dependent types in Haskell, i.e. constructing types with terms predicated upon values. Singleton types are a way of “cheating” by modeling the map between types and values as a structural property of the type.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.Exts (Any)
import Prelude hiding (succ)

data Nat = Z | S Nat

-- kind-indexed data family
data family Sing (a :: k)

data instance Sing (a :: Nat) where
  SZ :: Sing 'Z
  SS :: Sing n -> Sing ('S n)

data instance Sing (a :: Maybe k) where
  SNothing :: Sing 'Nothing
  SJust :: Sing x -> Sing ('Just x)

data instance Sing (a :: Bool) where
  STrue :: Sing True
  SFalse :: Sing False

data Fin (n :: Nat) where
  FZ :: Fin (S n)
  FS :: Fin n -> Fin (S n)

data Vec a n where
  Nil  :: Vec a Z
  Cons :: a -> Vec a n -> Vec a (S n)

class SingI (a :: k) where
  sing :: Sing a

instance SingI Z where
  sing = SZ

instance SingI n => SingI (S n) where
  sing = SS sing

deriving instance Show Nat
deriving instance Show (SNat a)
deriving instance Show (SBool a)
deriving instance Show (Fin a)
deriving instance Show a => Show (Vec a n)

type family (m :: Nat) :+ (n :: Nat) :: Nat where
  Z :+ n = n
  S m :+ n = S (m :+ n)

type SNat (k :: Nat) = Sing k
type SBool (k :: Bool) = Sing k
type SMaybe (b :: a) (k :: Maybe a) = Sing k

size :: Vec a n -> SNat n
size Nil         = SZ
size (Cons x xs) = SS (size xs)

forget :: SNat n -> Nat
forget SZ = Z
forget (SS n) = S (forget n)

natToInt :: Integral n => Nat -> n
natToInt Z     = 0
natToInt (S n) = natToInt n + 1

intToNat :: (Integral a, Ord a) => a -> Nat
intToNat 0 = Z
intToNat n = S $ intToNat (n - 1)

sNatToInt :: Num n => SNat x -> n
sNatToInt SZ     = 0
sNatToInt (SS n) = sNatToInt n + 1

index :: Fin n -> Vec a n -> a
index FZ (Cons x _)      = x
index (FS n) (Cons _ xs) = index n xs


test1 :: Fin (S (S (S Z)))
test1 = FS (FS FZ)

test2 :: Int
test2 = index FZ (1 `Cons` (2 `Cons` Nil))

test3 :: Sing ('Just ('S ('S Z)))
test3 = SJust (SS (SS SZ))

test4 :: Sing ('S ('S Z))
test4 = SS (SS SZ)

-- polymorphic constructor SingI
test5 :: Sing ('S ('S Z))
test5 = sing

The builtin singleton types provided in GHC.TypeLits have the useful implementation that type-level values can be reflected to the value-level and back up to the type-level, albeit under an existential.

someNatVal :: Integer -> Maybe SomeNat
someSymbolVal :: String -> SomeSymbol

natVal :: KnownNat n => proxy n -> Integer
symbolVal :: KnownSymbol n => proxy n -> String
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

import Data.Proxy
import GHC.TypeLits

a :: Integer
a = natVal (Proxy :: Proxy 1)
-- 1

b :: String
b = symbolVal (Proxy :: Proxy "foo")
-- "foo"

c :: Integer
c = natVal (Proxy :: Proxy (2 + 3))
-- 5

Closed Type Families

In the type families we’ve used so far (called open type families) there is no notion of ordering of the equations involved in the type-level function. The type family can be extended at any point in the code resolution simply proceeds sequentially through the available definitions. Closed type-families allow an alternative declaration that allows for a base case for the resolution allowing us to actually write recursive functions over types.

For example consider if we wanted to write a function which counts the arguments in the type of a function and reifies at the value-level.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Proxy
import GHC.TypeLits

type family Count (f :: *) :: Nat where
  Count (a -> b) = 1 + (Count b)
  Count x = 1

type Fn1 = Int -> Int
type Fn2 = Int -> Int -> Int -> Int

fn1 :: Integer
fn1 = natVal (Proxy :: Proxy (Count Fn1))
-- 2

fn2 :: Integer
fn2 = natVal (Proxy :: Proxy (Count Fn2))
-- 4

The variety of functions we can now write down are rather remarkable, allowing us to write meaningful logic at the type level.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

-- Type-level functions over type-level lists.

type family Reverse (xs :: [k]) :: [k] where
  Reverse '[] = '[]
  Reverse xs = Rev xs '[]

type family Rev (xs :: [k]) (ys :: [k]) :: [k] where
  Rev '[] i = i
  Rev (x ': xs) i = Rev xs (x ': i)

type family Length (as :: [k]) :: Nat where
  Length '[] = 0
  Length (x ': xs) = 1 + Length xs

type family If (p :: Bool) (a :: k) (b :: k) :: k where
  If True a b = a
  If False a b = b

type family Concat (as :: [k]) (bs :: [k]) :: [k] where
  Concat a '[] = a
  Concat '[] b = b
  Concat (a ': as) bs = a ': Concat as bs

type family Map (f :: a -> b) (as :: [a]) :: [b] where
  Map f '[] = '[]
  Map f (x ': xs) = f x ': Map f xs

type family Sum (xs :: [Nat]) :: Nat where
  Sum '[] = 0
  Sum (x ': xs) = x + Sum xs

ex1 :: Reverse [1,2,3] ~ [3,2,1] => Proxy a
ex1 = Proxy

ex2 :: Length [1,2,3] ~ 3 => Proxy a
ex2 = Proxy

ex3 :: (Length [1,2,3]) ~ (Length (Reverse [1,2,3])) => Proxy a
ex3 = Proxy

-- Reflecting type level computations back to the value level.
ex4 :: Integer
ex4 = natVal (Proxy :: Proxy (Length (Concat [1,2,3] [4,5,6])))
-- 6

ex5 :: Integer
ex5 = natVal (Proxy :: Proxy (Sum [1,2,3]))
-- 6

-- Couldn't match type ‘2’ with ‘1’
ex6 :: Reverse [1,2,3] ~ [3,1,2] => Proxy a
ex6 = Proxy

The results of type family functions need not necessarily be kinded as (*) either. For example using Nat or Constraint is permitted.

type family Elem (a :: k) (bs :: [k]) :: Constraint where
  Elem a (a ': bs) = (() :: Constraint)
  Elem a (b ': bs) = a `Elem` bs

type family Sum (ns :: [Nat]) :: Nat where
  Sum '[] = 0
  Sum (n ': ns) = n + Sum ns

Kind Indexed Type Families

Just as typeclasses are normally indexed on types, type families can also be indexed on kinds with the kinds given as explicit kind signatures on type variables.

type family (a :: k) == (b :: k) :: Bool
type instance a == b = EqStar a b
type instance a == b = EqArrow a b
type instance a == b = EqBool a b

type family EqStar (a :: *) (b :: *) where
  EqStar a a = True
  EqStar a b = False

type family EqArrow (a :: k1 -> k2) (b :: k1 -> k2) where
  EqArrow a a = True
  EqArrow a b = False

type family EqBool a b where
  EqBool True  True  = True
  EqBool False False = True
  EqBool a     b     = False

type family EqList a b where
  EqList '[]        '[]        = True
  EqList (h1 ': t1) (h2 ': t2) = (h1 == h2) && (t1 == t2)
  EqList a          b          = False

type family a && b where
  True && True = True
  a    && a    = False

HLists

A heterogeneous list is a cons list whose type statically encodes the ordered types of its values.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}

infixr 5 :::

data HList (ts :: [ * ]) where
  Nil :: HList '[]
  (:::) :: t -> HList ts -> HList (t ': ts)

-- Take the head of a non-empty list with the first value as Bool type.
headBool :: HList (Bool ': xs) -> Bool
headBool hlist = case hlist of
  (a ::: _) -> a

hlength :: HList x -> Int
hlength Nil = 0
hlength (_ ::: b) = 1 + (hlength b)


tuple :: (Bool, (String, (Double, ())))
tuple = (True, ("foo", (3.14, ())))

hlist :: HList '[Bool, String , Double , ()]
hlist = True ::: "foo" ::: 3.14 ::: () ::: Nil

Of course this immediately begs the question of how to print such a list out to a string in the presence of type-heterogeneity. In this case we can use type-families combined with constraint kinds to apply the Show over the HLists parameters to generate the aggregate constraint that all types in the HList are Showable, and then derive the Show instance.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.Exts (Constraint)

infixr 5 :::

data HList (ts :: [ * ]) where
  Nil :: HList '[]
  (:::) :: t -> HList ts -> HList (t ': ts)

type family Map (f :: a -> b) (xs :: [a]) :: [b]
type instance Map f '[] = '[]
type instance Map f (x ': xs) = f x ': Map f xs

type family Constraints (cs :: [Constraint]) :: Constraint
type instance Constraints '[] = ()
type instance Constraints (c ': cs) = (c, Constraints cs)

type AllHave (c :: k -> Constraint) (xs :: [k]) = Constraints (Map c xs)

showHList :: AllHave Show xs => HList xs -> [String]
showHList Nil = []
showHList (x ::: xs) = (show x) : showHList xs

instance AllHave Show xs => Show (HList xs) where
  show = show . showHList

example1 :: HList '[Bool, String , Double , ()]
example1 = True ::: "foo" ::: 3.14 ::: () ::: Nil
-- ["True","\"foo\"","3.14","()"]

Typelevel Dictionaries

Much of this discussion of promotion begs the question whether we can create data structures at the type-level to store information at compile-time. For example a type-level association list can be used to model a map between type-level symbols and any other promotable types. Together with type-families we can write down type-level traversal and lookup functions.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE UndecidableInstances #-}

import GHC.TypeLits
import Data.Proxy
import Data.Type.Equality

type family If (p :: Bool) (a :: k) (b :: k) :: k where
  If True a b = a
  If False a b = b

type family Lookup (k :: a) (ls :: [(a, b)]) :: Maybe b where
  Lookup k '[] = 'Nothing
  Lookup k ('(a, b) ': xs) = If (a == k) ('Just b) (Lookup k xs)

type M = [
    '("a", 1)
  , '("b", 2)
  , '("c", 3)
  , '("d", 4)
  ]

type K = "a"
type (!!) m (k :: Symbol) a = (Lookup k m) ~ Just a

value :: Integer
value = natVal ( Proxy :: (M !! "a") a => Proxy a )

If we ask GHC to expand out the type signature we can view the explicit implementation of the type-level map lookup function.

(!!)
  :: If
       (GHC.TypeLits.EqSymbol "a" k)
       ('Just 1)
       (If
          (GHC.TypeLits.EqSymbol "b" k)
          ('Just 2)
          (If
             (GHC.TypeLits.EqSymbol "c" k)
             ('Just 3)
             (If (GHC.TypeLits.EqSymbol "d" k) ('Just 4) 'Nothing)))
     ~ 'Just v =>
     Proxy k -> Proxy v

Advanced Proofs

Now that we have the length-indexed vector let’s go write the reverse function, how hard could it be?

So we go and write down something like this:

reverseNaive :: forall n a. Vec a n -> Vec a n
reverseNaive xs = go Nil xs -- Error: n + 0 != n
  where
    go :: Vec a m -> Vec a n -> Vec a (n :+ m)
    go acc Nil = acc
    go acc (Cons x xs) = go (Cons x acc) xs -- Error: n + succ m != succ (n + m)

Running this we find that GHC is unhappy about two lines in the code:

Couldn't match type ‘n’ with ‘n :+ 'Z
    Expected type: Vec a n
      Actual type: Vec a (n :+ 'Z)

Could not deduce ((n1 :+ 'S m) ~ 'S (n1 :+ m))
    Expected type: Vec a1 (k :+ m)
      Actual type: Vec a1 (n1 :+ 'S m)

As we unfold elements out of the vector we’ll end up doing a lot of type-level arithmetic over indices as we combine the subparts of the vector backwards, but as a consequence we find that GHC will run into some unification errors because it doesn’t know about basic arithmetic properties of the natural numbers. Namely that forall n. n + 0 = 0 and forall n m. n + (1 + m) = 1 + (n + m). Which of course it really shouldn’t be given that we’ve constructed a system at the type-level which intuitively models arithmetic but GHC is just a dumb compiler, it can’t automatically deduce the isomorphism between natural numbers and Peano numbers.

So at each of these call sites we now have a proof obligation to construct proof terms. Recall from our discussion of propositional equality from GADTs that we actually have such machinery to construct this now.

{-# LANGUAGE GADTs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ExplicitForAll #-}

import Data.Type.Equality

data Nat = Z | S Nat

data SNat n where
  Zero :: SNat Z
  Succ :: SNat n -> SNat (S n)

data Vec :: * -> Nat -> * where
  Nil :: Vec a Z
  Cons :: a -> Vec a n -> Vec a (S n)

instance Show a => Show (Vec a n) where
  show Nil         = "Nil"
  show (Cons x xs) = "Cons " ++ show x ++ " (" ++ show xs ++ ")"

type family (m :: Nat) :+ (n :: Nat) :: Nat where
  Z :+ n = n
  S m :+ n = S (m :+ n)

-- (a ~ b) implies (f a ~ f b)
cong :: a :~: b -> f a :~: f b
cong Refl = Refl

-- (a ~ b) implies (f a) implies (f b)
subst :: a :~: b -> f a -> f b
subst Refl = id

plus_zero :: forall n. SNat n -> (n :+ Z) :~: n
plus_zero Zero = Refl
plus_zero (Succ n) = cong (plus_zero n)

plus_suc :: forall n m. SNat n -> SNat m -> (n :+ (S m)) :~: (S (n :+ m))
plus_suc Zero m = Refl
plus_suc (Succ n) m = cong (plus_suc n m)

size :: Vec a n -> SNat n
size Nil         = Zero
size (Cons _ xs) = Succ $ size xs

reverse :: forall n a. Vec a n -> Vec a n
reverse xs = subst (plus_zero (size xs)) $ go Nil xs
  where
    go :: Vec a m -> Vec a k -> Vec a (k :+ m)
    go acc Nil = acc
    go acc (Cons x xs) = subst (plus_suc (size xs) (size acc)) $ go (Cons x acc) xs

append :: Vec a n -> Vec a m -> Vec a (n :+ m)
append (Cons x xs) ys = Cons x (append xs ys)
append Nil         ys = ys

vec :: Vec Int (S (S (S Z)))
vec = 1 `Cons` (2 `Cons` (3 `Cons` Nil))

test :: Vec Int (S (S (S Z)))
test = Main.reverse vec

One might consider whether we could avoid using the singleton trick and just use type-level natural numbers, and technically this approach should be feasible although it seems that the natural number solver in GHC 7.8 can decide some properties but not the ones needed to complete the natural number proofs for the reverse functions.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ExplicitForAll #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

import Prelude hiding (Eq)
import GHC.TypeLits
import Data.Type.Equality

type Z = 0

type family S (n :: Nat) :: Nat where
  S n = n + 1

-- Yes!
eq_zero :: Z :~: Z
eq_zero = Refl

-- Yes!
zero_plus_one :: (Z + 1) :~: (1 + Z)
zero_plus_one = Refl

-- Yes!
plus_zero :: forall n. (n + Z) :~: n
plus_zero = Refl

-- Yes!
plus_one :: forall n. (n + S Z) :~: S n
plus_one = Refl

-- No.
plus_suc :: forall n m. (n + (S m)) :~: (S (n + m))
plus_suc = Refl

Caveat should be that there might be a way to do this in GHC 7.6 that I’m not aware of. In GHC 7.10 there are some planned changes to solver that should be able to resolve these issues. In particular there are plans to allow pluggable type system extensions that could outsource these kind of problems to third party SMT solvers which can solve these kind of numeric relations and return this information back to GHC’s typechecker.

As an aside this is a direct transliteration of the equivalent proof in Agda, which is accomplished via the same method but without the song and dance to get around the lack of dependent types.

module Vector where

infixr 10 _∷_

data: Set where
  zero :
  suc  : ℕ → ℕ

{-# BUILTIN NATURAL ℕ    #-}
{-# BUILTIN ZERO    zero #-}
{-# BUILTIN SUC     suc  #-}

infixl 6 _+_

_+_ : ℕ → ℕ → ℕ
0 + n = n
suc m + n = suc (m + n)

data Vec (A : Set) : ℕ → Set where
  []  : Vec A 0
  _∷_ : ∀ {n} → AVec A n → Vec A (suc n)

_++_ : ∀ {A n m} → Vec A n → Vec A m → Vec A (n + m)
[] ++ ys = ys
(x ∷ xs) ++ ys = x ∷ (xs ++ ys)

infix 4 _≡_

data _≡_ {A : Set} (x : A) : ASet where
  refl : x ≡ x

subst : {A : Set} → (P : ASet) → ∀{x y} → x ≡ y → P x → P y
subst P refl p = p

cong : {A B : Set} (f : AB) → {x y : A} → x ≡ y → f x ≡ f y
cong f refl = refl

vec : ∀ {A} (k : ℕ) → Set
vec {A} k = Vec A k

plus_zero : {n : ℕ} → n + 0 ≡ n 
plus_zero {zero}  = refl
plus_zero {suc n} = cong suc plus_zero

plus_suc : {n : ℕ} → n + (suc 0) ≡ suc n 
plus_suc {zero}  = refl
plus_suc {suc n} = cong suc (plus_suc {n})

reverse : ∀ {A n} → Vec A n → Vec A n
reverse []       = []
reverse {A} {suc n} (x ∷ xs) = subst vec (plus_suc {n}) (reverse xs ++ (x ∷ []))

Liquid Haskell

LiquidHaskell is an extension to GHC’s typesystem that adds the capacity for refinement types using the annotation syntax. The type signatures of functions can be checked by the external for richer type semantics than default GHC provides, including non-exhaustive patterns and complex arithmetic properties that require external SMT solvers to verify. For instance LiquidHaskell can statically verify that a function that operates over a Maybe a is always given a Just or that an arithmetic function always yields an Int that is an even positive number.

LiquidHaskell analyses the modules and discharges proof obligations to an SMT solver to see if the conditions are satisfiable. This allows us to prove the absence of a family of errors around memory safety, arithmetic exceptions and information flow.

You will need either the Microsoft Research Z3 SMT solver or Stanford CVC4 SMT solver.

For Linux:

sudo apt install z3 # z3
sudo apt install cvc4 # cvc4

For Mac:

brew tap z3 # z3
brew tap cvc4/cvc4 # cvc4
brew install cvc4/cvc4/cvc4

Then install LiquidHaskell either with Cabal or Stack:

# Run one of the following
cabal install liquidhaskell
stack install liquidhaskell

Then with the LiquidHaskell framework installed you can annotate your Haskell modules with refinement types and run the liquid

import Prelude hiding (mod, gcd)

{-@ mod :: a:Nat -> b:{v:Nat| 0 < v} -> {v:Nat | v < b} @-}
mod :: Int -> Int -> Int
mod a b
  | a < b = a
  | otherwise = mod (a - b) b

{-@ gcd :: a:Nat -> b:{v:Nat | v < a} -> Int @-}
gcd :: Int -> Int -> Int
gcd a 0 = a
gcd a b = gcd b (a `mod` b)

The module can be run through the solver using the liquid command line tool.

$ liquid example.hs
Done solving.

**** DONE:  solve **************************************************************


**** DONE:  annotate ***********************************************************


**** RESULT: SAFE **************************************************************

To run Liquid Haskell over a Cabal project you can include the cabal directory by passing cabaldir flag and then including the source directory which contains your application code. You can specify additional specification for external modules by including a spec folder containing special LH modules with definitions.

An example specification module.

module spec MySpec where

import GHC.Base
import GHC.Integer
import Data.Foldable

assume length :: Data.Foldable.Foldable f => xs:f a -> {v:Nat | v = len xs}

To run the checker over your project:

$ liquid -f --cabaldir -i src -i spec src/*.hs

For more extensive documentation and further use cases see the official documentation:

Generics

Haskell has several techniques for automatic generation of type classes for a variety of tasks that consist largely of boilerplate code generation such as:

Generic

The most modern method of doing generic programming uses type families to achieve a better method of deriving the structural properties of arbitrary type classes. Generic implements a typeclass with an associated type Rep ( Representation ) together with a pair of functions that form a 2-sided inverse ( isomorphism ) for converting to and from the associated type and the derived type in question.

class Generic a where
  type Rep a
  from :: a -> Rep a
  to :: Rep a -> a

class Datatype d where
  datatypeName :: t d f a -> String
  moduleName :: t d f a -> String

class Constructor c where
  conName :: t c f a -> String

GHC.Generics defines a set of named types for modeling the various structural properties of types in available in Haskell.

-- | Sums: encode choice between constructors
infixr 5 :+:
data (:+:) f g p = L1 (f p) | R1 (g p)

-- | Products: encode multiple arguments to constructors
infixr 6 :*:
data (:*:) f g p = f p :*: g p

-- | Tag for M1: datatype
data D
-- | Tag for M1: constructor
data C

-- | Constants, additional parameters and recursion of kind *
newtype K1 i c p = K1 { unK1 :: c }

-- | Meta-information (constructor names, etc.)
newtype M1 i c f p = M1 { unM1 :: f p }

-- | Type synonym for encoding meta-information for datatypes
type D1 = M1 D

-- | Type synonym for encoding meta-information for constructors
type C1 = M1 C

Using the deriving mechanics GHC can generate this Generic instance for us mechanically, if we were to write it by hand for a simple type it might look like this:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

import GHC.Generics

data Animal
  = Dog
  | Cat

instance Generic Animal where
  type
    Rep Animal =
      D1 ( 'MetaData "Animal" "Main" "main" 'False )
         ( C1 ( 'MetaCons "Dog" 'PrefixI 'False)
           U1 :+: C1 ( 'MetaCons "Cat" 'PrefixI 'False) U1
         )

  from Dog = M1 (L1 (M1 U1))
  from Cat = M1 (R1 (M1 U1))

  to (M1 (L1 (M1 U1))) = Dog
  to (M1 (R1 (M1 U1))) = Cat

data T_Animal -- Animal type
data C_Dog -- Dog Constructor
data C_Cat -- Cat Constructor

instance Datatype T_Animal where
  datatypeName _ = "Animal"
  moduleName _ = "Main"
  packageName _ = "main"

instance Constructor C_Dog where
  conName _ = "Dog"

instance Constructor C_Cat where
  conName _ = "Cat"

Use kind! in GHCi we can look at the type family Rep associated with a Generic instance.

λ: :kind! Rep Animal
Rep Animal :: * -> *
= M1 D T_Animal (M1 C C_Dog U1 :+: M1 C C_Cat U1)

λ: :kind! Rep ()
Rep () :: * -> *
= M1 D GHC.Generics.D1() (M1 C GHC.Generics.C1_0() U1)

λ: :kind! Rep [()]
Rep [()] :: * -> *
= M1
    D
    GHC.Generics.D1[]
    (M1 C GHC.Generics.C1_0[] U1
     :+: M1
           C
           GHC.Generics.C1_1[]
           (M1 S NoSelector (K1 R ()) :*: M1 S NoSelector (K1 R [()])))

Now the clever bit, instead writing our generic function over the datatype we instead write it over the Rep and then reify the result using from. So for an equivalent version of Haskell’s default Eq that instead uses generic deriving we could write:

class GEq' f where
  geq' :: f a -> f a -> Bool

instance GEq' U1 where
  geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
  geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
  geq' (M1 a) (M1 b) = geq' a b

-- Equality for sums.
instance (GEq' a, GEq' b) => GEq' (a :+: b) where
  geq' (L1 a) (L1 b) = geq' a b
  geq' (R1 a) (R1 b) = geq' a b
  geq' _      _      = False

-- Equality for products.
instance (GEq' a, GEq' b) => GEq' (a :*: b) where
  geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

To accommodate the two methods of writing classes (generic-deriving or custom implementations) we can use the DefaultSignatures extension to allow the user to leave typeclass functions blank and defer to Generic or to define their own.

{-# LANGUAGE DefaultSignatures #-}

class GEq a where
  geq :: a -> a -> Bool

  default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
  geq x y = geq' (from x) (from y)

Now anyone using our library need only derive Generic and create an empty instance of our typeclass instance without writing any boilerplate for GEq.

Here is a complete example for deriving equality generics:

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}

import GHC.Generics

-- Auxiliary class
class GEq' f where
  geq' :: f a -> f a -> Bool

instance GEq' U1 where
  geq' _ _ = True

instance (GEq c) => GEq' (K1 i c) where
  geq' (K1 a) (K1 b) = geq a b

instance (GEq' a) => GEq' (M1 i c a) where
  geq' (M1 a) (M1 b) = geq' a b

instance (GEq' a, GEq' b) => GEq' (a :+: b) where
  geq' (L1 a) (L1 b) = geq' a b
  geq' (R1 a) (R1 b) = geq' a b
  geq' _      _      = False

instance (GEq' a, GEq' b) => GEq' (a :*: b) where
  geq' (a1 :*: b1) (a2 :*: b2) = geq' a1 a2 && geq' b1 b2

--
class GEq a where
  geq :: a -> a -> Bool
  default geq :: (Generic a, GEq' (Rep a)) => a -> a -> Bool
  geq x y = geq' (from x) (from y)

-- Base equalities
instance GEq Char where geq = (==)
instance GEq Int where geq = (==)
instance GEq Float where geq = (==)

-- Equalities derived from structure of (:+:) and (:*:)
instance GEq a => GEq (Maybe a)
instance (GEq a, GEq b) => GEq (a,b)

main :: IO ()
main = do
  print $ geq 2 (3 :: Int)
  print $ geq 'a' 'b'
  print $ geq (Just 'a') (Just 'a')
  print $ geq ('a','b') ('a', 'b')

See:

Generic Deriving

Using Generics many common libraries provide a mechanisms to derive common typeclass instances. Some real world examples:

The hashable library allows us to derive hashing functions.

{-# LANGUAGE DeriveGeneric #-}

import GHC.Generics (Generic)
import Data.Hashable

data Color = Red | Green | Blue deriving (Generic, Show)

instance Hashable Color where

example1 :: Int
example1 = hash Red
-- 839657738087498284

example2 :: Int
example2 = hashWithSalt 0xDEADBEEF Red
-- 62679985974121021

The cereal library allows us to automatically derive a binary representation.

{-# LANGUAGE DeriveGeneric #-}

import Data.Word
import Data.ByteString
import Data.Serialize

import GHC.Generics

data Val = A [Val] | B [(Val, Val)] | C
  deriving (Generic, Show)

instance Serialize Val where

encoded :: ByteString
encoded = encode (A [B [(C, C)]])
-- "\NUL\NUL\NUL\NUL\NUL\NUL\NUL\NUL\SOH\SOH\NUL\NUL\NUL\NUL\NUL\NUL\NUL\SOH\STX\STX"

bytes :: [Word8]
bytes = unpack encoded
-- [0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,2,2]

decoded :: Either String Val
decoded = decode encoded

The aeson library allows us to derive JSON representations for JSON instances.

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}

import Data.Aeson
import GHC.Generics

data Point = Point { _x :: Double, _y :: Double }
   deriving (Show, Generic)

instance FromJSON Point
instance ToJSON Point

example1 :: Maybe Point
example1 = decode "{\"x\":3.0,\"y\":-1.0}"

example2 = encode $ Point 123.4 20

See: A Generic Deriving Mechanism for Haskell

Higher Kinded Generics

Using the same interface GHC.Generics provides a separate typeclass for higher-kinded generics.

class Generic1 f where
  type Rep1 f :: * -> *
  from1  :: f a -> (Rep1 f) a
  to1    :: (Rep1 f) a -> f a

So for instance Maybe has Rep1 of the form:

type instance Rep1 Maybe
  = D1
      GHC.Generics.D1Maybe
      (C1 C1_0Maybe U1
       :+: C1 C1_1Maybe (S1 NoSelector Par1))

Typeable

The Typeable class be used to create runtime type information for arbitrary types.

typeOf :: Typeable a => a -> TypeRep
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Typeable

data Animal = Cat | Dog deriving Typeable
data Zoo a = Zoo [a] deriving Typeable

equal :: (Typeable a, Typeable b) => a -> b -> Bool
equal a b = typeOf a == typeOf b

example1 :: TypeRep
example1 = typeOf Cat
-- Animal

example2 :: TypeRep
example2 = typeOf (Zoo [Cat, Dog])
-- Zoo Animal

example3 :: TypeRep
example3 = typeOf ((1, 6.636e-34, "foo") :: (Int, Double, String))
-- (Int,Double,[Char])

example4 :: Bool
example4 = equal False ()
-- False

Using the Typeable instance allows us to write down a type safe cast function which can safely use unsafeCast and provide a proof that the resulting type matches the input.

cast :: (Typeable a, Typeable b) => a -> Maybe b
cast x
  | typeOf x == typeOf ret = Just ret
  | otherwise = Nothing
  where
    ret = unsafeCast x

Of historical note is that writing our own Typeable classes is currently possible of GHC 7.6 but allows us to introduce dangerous behavior that can cause crashes, and shouldn’t be done except by GHC itself. As of 7.8 GHC forbids hand-written Typeable instances. As of 7.10 -XAutoDeriveTypeable is enabled by default.

See: Typeable and Data in Haskell

Dynamic Types

Since we have a way of querying runtime type information we can use this machinery to implement a Dynamic type. This allows us to box up any monotype into a uniform type that can be passed to any function taking a Dynamic type which can then unpack the underlying value in a type-safe way.

toDyn :: Typeable a => a -> Dynamic
fromDyn :: Typeable a => Dynamic -> a -> a
fromDynamic :: Typeable a => Dynamic -> Maybe a
cast :: (Typeable a, Typeable b) => a -> Maybe b
import Data.Dynamic
import Data.Maybe

dynamicBox :: Dynamic
dynamicBox = toDyn (6.62 :: Double)

example1 :: Maybe Int
example1 = fromDynamic dynamicBox
-- Nothing

example2 :: Maybe Double
example2 = fromDynamic dynamicBox
-- Just 6.62

example3 :: Int
example3 = fromDyn dynamicBox 0
-- 0

example4 :: Double
example4 = fromDyn dynamicBox 0.0
-- 6.62

In GHC 7.8 the Typeable class is poly-kinded so polymorphic functions can be applied over functions and higher kinded types.

Use of Dynamic is somewhat rare, except in odd cases that have to deal with foreign memory and FFI interfaces. Using it for business logic is considered a code smell. Consider a more idiomatic solution.

Data

Just as Typeable lets us create runtime type information, the Data class allows us to reflect information about the structure of datatypes to runtime as needed.

class Typeable a => Data a where
  gfoldl  :: (forall d b. Data d => c (d -> b) -> d -> c b)
          -> (forall g. g -> c g)
          -> a
          -> c a

  gunfold :: (forall b r. Data b => c (b -> r) -> c r)
          -> (forall r. r -> c r)
          -> Constr
          -> c a

  toConstr :: a -> Constr
  dataTypeOf :: a -> DataType
  gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r

The types for gfoldl and gunfold are a little intimidating ( and depend on RankNTypes ), the best way to understand is to look at some examples. First the most trivial case a simple sum type Animal would produce the following code:

data Animal = Cat | Dog deriving Typeable
instance Data Animal where
  gfoldl k z Cat = z Cat
  gfoldl k z Dog = z Dog

  gunfold k z c
    = case constrIndex c of
        1 -> z Cat
        2 -> z Dog

  toConstr Cat = cCat
  toConstr Dog = cDog

  dataTypeOf _ = tAnimal

tAnimal :: DataType
tAnimal = mkDataType "Main.Animal" [cCat, cDog]

cCat :: Constr
cCat = mkConstr tAnimal "Cat" [] Prefix

cDog :: Constr
cDog = mkConstr tAnimal "Dog" [] Prefix

For a type with non-empty containers we get something a little more interesting. Consider the list type:

instance Data a => Data [a] where
  gfoldl _ z []     = z []
  gfoldl k z (x:xs) = z (:) `k` x `k` xs

  toConstr []    = nilConstr
  toConstr (_:_) = consConstr

  gunfold k z c
    = case constrIndex c of
        1 -> z []
        2 -> k (k (z (:)))

  dataTypeOf _ = listDataType

nilConstr :: Constr
nilConstr = mkConstr listDataType "[]" [] Prefix

consConstr :: Constr
consConstr = mkConstr listDataType "(:)" [] Infix

listDataType :: DataType
listDataType = mkDataType "Prelude.[]" [nilConstr,consConstr]

Looking at gfoldl we see the Data has an implementation of a function for us to walk an applicative over the elements of the constructor by applying a function k over each element and applying z at the spine. For example look at the instance for a 2-tuple as well:

instance (Data a, Data b) => Data (a,b) where
  gfoldl k z (a,b) = z (,) `k` a `k` b

  toConstr (_,_) = tuple2Constr

  gunfold k z c
    = case constrIndex c of
      1 -> k (k (z (,)))

  dataTypeOf _  = tuple2DataType

tuple2Constr :: Constr
tuple2Constr = mkConstr tuple2DataType "(,)" [] Infix

tuple2DataType :: DataType
tuple2DataType = mkDataType "Prelude.(,)" [tuple2Constr]

This is pretty neat, now within the same typeclass we have a generic way to introspect any Data instance and write logic that depends on the structure and types of its subterms. We can now write a function which allows us to traverse an arbitrary instance of Data and twiddle values based on pattern matching on the runtime types. So let’s write down a function over which increments a Value type for both for n-tuples and lists.

{-# LANGUAGE DeriveDataTypeable #-}

import Data.Data
import Control.Monad.Identity
import Control.Applicative

data Animal = Cat | Dog deriving (Data, Typeable)

newtype Val = Val Int deriving (Show, Data, Typeable)

incr :: Typeable a => a -> a
incr = maybe id id (cast f)
  where f (Val x) = Val (x * 100)

over :: Data a => a -> a
over x = runIdentity $ gfoldl cont base (incr x)
  where
    cont k d = k <*> (pure $ over d)
    base = pure


example1 :: Constr
example1 = toConstr Dog
-- Dog

example2 :: DataType
example2 = dataTypeOf Cat
-- DataType {tycon = "Main.Animal", datarep = AlgRep [Cat,Dog]}

example3 :: [Val]
example3 = over [Val 1, Val 2, Val 3]
-- [Val 100,Val 200,Val 300]

example4 :: (Val, Val, Val)
example4 = over (Val 1, Val 2, Val 3)
-- (Val 100,Val 200,Val 300)

We can also write generic operations, for example to count the number of parameters in a data type.

numHoles :: Data a => a -> Int
numHoles = gmapQl (+) 0 (const 1)

example1 :: Int
example1 = numHoles (1,2,3,4,5,6,7)
-- 7

example2 :: Int
example2 = numHoles (Just 3)
-- 1

Uniplate

Uniplate is a generics library for writing traversals and transformation for arbitrary data structures. It is extremely useful for writing AST transformations and rewriting systems.

plate :: from -> Type from to
(|*)  :: Type (to -> from) to -> to -> Type from to
(|-)  :: Type (item -> from) to -> item -> Type from to

descend   :: Uniplate on => (on -> on) -> on -> on
transform :: Uniplate on => (on -> on) -> on -> on
rewrite   :: Uniplate on => (on -> Maybe on) -> on -> on

The descend function will apply a function to each immediate descendant of an expression and then combines them up into the parent expression.

The transform function will perform a single pass bottom-up transformation of all terms in the expression.

The rewrite function will perform an exhaustive transformation of all terms in the expression to fixed point, using Maybe to signify termination.

import Data.Generics.Uniplate.Direct

data Expr a
  = Fls
  | Tru
  | Var a
  | Not (Expr a)
  | And (Expr a) (Expr a)
  | Or  (Expr a) (Expr a)
  deriving (Show, Eq)

instance Uniplate (Expr a) where
  uniplate (Not f)     = plate Not |* f
  uniplate (And f1 f2) = plate And |* f1 |* f2
  uniplate (Or f1 f2)  = plate Or |* f1 |* f2
  uniplate x           = plate x

simplify :: Expr a -> Expr a
simplify = transform simp
 where
   simp (Not (Not f)) = f
   simp (Not Fls) = Tru
   simp (Not Tru) = Fls
   simp x = x

reduce :: Show a => Expr a -> Expr a
reduce = rewrite cnf
  where
    -- double negation
    cnf (Not (Not p)) = Just p

    -- de Morgan
    cnf (Not (p `Or` q))  = Just $ (Not p) `And` (Not q)
    cnf (Not (p `And` q)) = Just $ (Not p) `Or` (Not q)

    -- distribute conjunctions
    cnf (p `Or` (q `And` r)) = Just $ (p `Or` q) `And` (p `Or` r)
    cnf ((p `And` q) `Or` r) = Just $ (p `Or` q) `And` (p `Or` r)
    cnf _ = Nothing


example1 :: Expr String
example1 = simplify (Not (Not (Not (Not (Var "a")))))
-- Var "a"

example2 :: [String]
example2 = [a | Var a <- universe ex]
  where
    ex = Or (And (Var "a") (Var "b")) (Not (And (Var "c") (Var "d")))
-- ["a","b","c","d"]

example3 :: Expr String
example3 = reduce $ ((a `And` b) `Or` (c `And` d)) `Or` e
  where
    a = Var "a"
    b = Var "b"
    c = Var "c"
    d = Var "d"
    e = Var "e"

Alternatively Uniplate instances can be derived automatically from instances of Data without the need to explicitly write a Uniplate instance. This approach carries a slight amount of overhead over an explicit hand-written instance.

import Data.Data
import Data.Typeable
import Data.Generics.Uniplate.Data

data Expr a
  = Fls
  | Tru
  | Lit a
  | Not (Expr a)
  | And (Expr a) (Expr a)
  | Or (Expr a) (Expr a)
  deriving (Data, Typeable, Show, Eq)

Biplate

Biplates generalize plates where the target type isn’t necessarily the same as the source, it uses multiparameter typeclasses to indicate the type sub of the sub-target. The Uniplate functions all have an equivalent generalized biplate form.

descendBi   :: Biplate from to => (to -> to) -> from -> from
transformBi :: Biplate from to => (to -> to) -> from -> from
rewriteBi   :: Biplate from to => (to -> Maybe to) -> from -> from

descendBiM   :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
transformBiM :: (Monad m, Biplate from to) => (to -> m to) -> from -> m from
rewriteBiM   :: (Monad m, Biplate from to) => (to -> m (Maybe to)) -> from -> m from
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FlexibleContexts #-}

import Data.Generics.Uniplate.Direct

type Name = String

data Expr
  = Var Name
  | Lam Name Expr
  | App Expr Expr
  deriving Show

data Stmt
  = Decl [Stmt]
  | Let Name Expr
  deriving Show

instance Uniplate Expr where
  uniplate (Var x  ) = plate Var |- x
  uniplate (App x y) = plate App |* x |* y
  uniplate (Lam x y) = plate Lam |- x |* y

instance Biplate Expr Expr where
  biplate = plateSelf

instance Uniplate Stmt where
  uniplate (Decl x  ) = plate Decl ||* x
  uniplate (Let x y) = plate Let |-  x |- y

instance Biplate Stmt Stmt where
  biplate = plateSelf

instance Biplate Stmt Expr where
  biplate (Decl x) = plate Decl ||+ x
  biplate (Let x y) = plate Let |- x |* y

rename :: Name -> Name -> Expr -> Expr
rename from to = rewrite f
  where
    f (Var a) | a == from = Just (Var to)
    f (Lam a b) | a == from = Just (Lam to b)
    f _ = Nothing

s, k, sk :: Expr
s = Lam "x" (Lam "y" (Lam "z" (App (App (Var "x") (Var "z")) (App (Var "y") (Var "z")))))
k = Lam "x" (Lam "y" (Var "x"))
sk = App s k

m :: Stmt
m = descendBi f $ Decl [ (Let "s" s) , Let "k" k , Let "sk" sk ]
  where
    f = rename "x" "a"
      . rename "y" "b"
      . rename "z" "c"

Mathematics

Numeric Tower

Haskell’s numeric tower is unusual and the source of some confusion for novices. Haskell is one of the few languages to incorporate statically typed overloaded literals without a mechanism for “coercions” often found in other languages.

To add to the confusion numerical literals in Haskell are desugared into a function from a numeric typeclass which yields a polymorphic value that can be instantiated to any instance of the Num or Fractional typeclass at the call-site, depending on the inferred type.

To use a blunt metaphor, we’re effectively placing an object in a hole and the size and shape of the hole defines the object you place there. This is very different than in other languages where a numeric literal like 2.718 is hard coded in the compiler to be a specific type ( double or something ) and you cast the value at runtime to be something smaller or larger as needed.

42 :: Num a => a
fromInteger (42 :: Integer)

2.71 :: Fractional a => a
fromRational (2.71 :: Rational)

The numeric typeclass hierarchy is defined as such:

class Num a
class (Num a, Ord a) => Real a
class Num a => Fractional a
class (Real a, Enum a) => Integral a
class (Real a, Fractional a) => RealFrac a
class Fractional a => Floating a
class (RealFrac a, Floating a) => RealFloat a

Conversions between concrete numeric types ( from : left column, to : top row ) is accomplished with several generic functions.

Double Float Int Word Integer Rational
Double id fromRational truncate truncate truncate toRational
Float fromRational id truncate truncate truncate toRational
Int fromIntegral fromIntegral id fromIntegral fromIntegral fromIntegral
Word fromIntegral fromIntegral fromIntegral id fromIntegral fromIntegral
Integer fromIntegral fromIntegral fromIntegral fromIntegral id fromIntegral
Rational fromRational fromRational truncate truncate truncate id

GMP Integers

The Integer type in GHC is implemented by the GMP (libgmp) arbitrary precision arithmetic library. Unlike the Int type, the size of Integer values is bounded only by the available memory.

λ: (2^64 :: Int)
0
λ: (2^64 :: Integer)
18446744073709551616

Most notably libgmp is one of the few libraries that compiled Haskell binaries are dynamically linked against. An alternative library integer-simple can be linked in place of libgmp.

Complex Numbers

Haskell supports arithmetic with complex numbers via a Complex datatype from the Data.Complex module. The first argument is the real part, while the second is the imaginary part. The type has a single parameter and inherits its numerical typeclass components (Num, Fractional, Floating) from the type of this parameter.

-- 1 + 2i
let complex = 1 :+ 2
data Complex a = a :+ a
mkPolar :: RealFloat a => a -> a -> Complex a

The Num instance for Complex is only defined if parameter of Complex is an instance of RealFloat.

λ: 0 :+ 1
0 :+ 1 :: Complex Integer

λ: (0 :+ 1) + (1 :+ 0)
1.0 :+ 1.0 :: Complex Integer

λ: exp (0 :+ 2 * pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double

λ: mkPolar 1 (2*pi)
1.0 :+ (-2.4492935982947064e-16) :: Complex Double

λ: let f x n = (cos x :+ sin x)^n
λ: let g x n = cos (n*x) :+ sin (n*x)

Decimal & Scientific Types

Scientific provides arbitrary-precision numbers represented using scientific notation. The constructor takes an arbitrarily sized Integer argument for the digits and an Int for the exponent. Alternatively the value can be parsed from a String or coerced from either Double/Float.

scientific :: Integer -> Int -> Scientific
fromFloatDigits :: RealFloat a => a -> Scientific
import Data.Scientific

c , h, g, a, k :: Scientific
c = scientific 299792458 (0) -- Speed of light
h = scientific 662606957 (-42) -- Planck's constant
g = scientific 667384 (-16) -- Gravitational constant
a = scientific 729735257 (-11) -- Fine structure constant
k = scientific 268545200 (-9) -- Khinchin-Levy Constant

tau :: Scientific
tau = fromFloatDigits (2 * pi)

maxDouble64 :: Double
maxDouble64 = read "1.7976931348623159e308"

-- Infinity

maxScientific :: Scientific
maxScientific = read "1.7976931348623159e308"
-- 1.7976931348623159e308

Polynomial Arithmetic

The standard library for working with symbolic polynomials is the poly library. It exposes a interface for working with univariate polynomials which are backed by an efficient vector library. This allows us to efficiently manipulate and perform arithmetic operations over univariate polynomails.

For example we can instantiate symbolic polynomials, write recurrence rules and generators over them and factor them.

import Data.Poly

abel :: VPoly Integer
abel = X ^ 5 - X + 1

fibPoly :: Integer -> VPoly Integer
fibPoly 0 = 0
fibPoly 1 = 1
fibPoly n = X * fibPoly (n - 1) + fibPoly (n - 2)

division :: (VPoly Double, VPoly Double)
division = gcdExt (X ^ 3 - 2 * X ^ 2 - 4) (X - 3)

See: poly

Combinatorics

Combinat is the standard Haskell library for doing combinatorial calculations. It provides a variety of functions for computing:

See: combinat

Number Theory

Arithmoi is the standard number theory library for Haskell. It provides functions for calculing common number theory operations used in combinators and cryptography applications in Haskell. Including:

import Data.Maybe
import Math.NumberTheory.ArithmeticFunctions
import Math.NumberTheory.Moduli.Sqrt
import Math.NumberTheory.Primes
import Math.NumberTheory.Zeta

-- Riemann zeta function
exampleZeta :: Double
exampleZeta = zetas 1e-10 !! 10

-- Euler totient function
exampleEuler :: Integer
exampleEuler = totient 25

-- Ramanujan tau function
exampleRamanujan :: Integer
exampleRamanujan = ramanujan 16

-- Primality testing
examplePrimality :: Maybe (Prime Integer)
examplePrimality = isPrime 2147483647

-- Square roots moduluo prime
exampleSqrt :: [Integer]
exampleSqrt = sqrtsModPrime 42 (fromJust examplePrimality)

See: arithmoi

Stochastic Calculus

HQuantLib provides a variety of functions for working with stochastic processes. This primarily applies to stochastic calculus applied to pricing financial products such as the Black-Scholes pricing engine and routines for calculating volatility smiles of options products.

See: HQuantLib

Differential Equations

There are several Haskell libraries for finding numerical solutions to systems of differential equations. These kind of problems show up quite frequently in scientific computing problems.

For example a simple differential equation is Van der Pol oscillator which occurs frequently in physics. This is a second order differential equation which relates the position of a oscillator x in terms of time, acceleration ${d^{2}x \over dt^{2}}$, and the velocity $dx \over dt$ a scalar parameter μ. It is given by the equation.

$$ {\displaystyle {d^{2}x \over dt^{2}}-\mu (1-x^{2}){dx \over dt}+x=0,} $$

For example this equation can be solved for a fixed μ and set of boundary conditions for the time parameter t. The solution is returned as an HMatrix vector.

{-# LANGUAGE OverloadedLists #-}

module Main where

import Numeric.GSL.ODE
import Numeric.LinearAlgebra

-- Differential equation
f :: Double -> [Double] -> [Double]
f t [x, v] = [v, - x + mu * v * (1 - x ^ 2)]

-- Mu scalar, dampening strenth
mu :: Double
mu = 0.1

-- Boundary conditions
ts :: Vector Double
ts = linspace 1000 (0, 50)

-- Use default solver: Embedded Runge-Kutta-Fehlberg (4, 5) method.
vanderpol1 :: [Vector Double]
vanderpol1 = toColumns $ odeSolve f [1, 0] ts

-- Use Runge-Kutta (2,3) solver
vanderpol2 :: [Vector Double]
vanderpol2 = toColumns $ odeSolveV RK2 hi epsAbs epsRel (l2v f) [1, 0] ts
  where
    epsAbs = 1.49012e-08
    epsRel = epsAbs
    hi = (ts ! 1 - ts ! 0) / 100
    l2v f = \t -> fromList . f t . toList

main :: IO ()
main = do
  print vanderpol1
  print vanderpol2

Statistics & Probability

Haskell has a basic statistics library for calculating descriptive statistics, generating and sampling probability distributions and performing statistical tests.

import Data.Vector
import Statistics.Sample

import Statistics.Distribution.Normal
import Statistics.Distribution.Poisson
import qualified Statistics.Distribution as S

s1 :: Vector Double
s1 = fromList [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

s2 :: PoissonDistribution
s2 = poisson 2.5

s3 :: NormalDistribution
s3 = normalDistr mean stdDev
  where
    mean   = 1
    stdDev = 1

descriptive :: IO ()
descriptive = do
  print $ range s1
  -- 9.0
  print $ mean s1
  -- 5.5
  print $ stdDev s1
  -- 3.0276503540974917
  print $ variance s1
  -- 8.25
  print $ harmonicMean s1
  -- 3.414171521474055
  print $ geometricMean s1
  -- 4.5287286881167645

discrete :: IO ()
discrete = do
  print $ S.cumulative s2 0
  -- 8.208499862389884e-2
  print $ S.mean s2
  -- 2.5
  print $ S.variance s2
  -- 2.5
  print $ S.stdDev s2
  -- 1.5811388300841898

continuous :: IO ()
continuous = do
  print $ S.cumulative s3 0
  -- 0.15865525393145707
  print $ S.quantile s3 0.5
  -- 1.0
  print $ S.density s3 0
  -- 0.24197072451914334
  print $ S.mean s3
  -- 1.0
  print $ S.variance s3
  -- 1.0
  print $ S.stdDev s3
  -- 1.0

Constructive Reals

Instead of modeling the real numbers on finite precision floating point numbers we alternatively work with Num which internally manipulates the power series expansions for the expressions when performing operations like arithmetic or transcendental functions without losing precision when performing intermediate computations. Then we simply slice off a fixed number of terms and approximate the resulting number to a desired precision. This approach is not without its limitations and caveats ( notably that it may diverge ).

exp(x)    = 1 + x + 1/2*x^2 + 1/6*x^3 + 1/24*x^4 + 1/120*x^5 ...
sqrt(1+x) = 1 + 1/2*x - 1/8*x^2 + 1/16*x^3 - 5/128*x^4 + 7/256*x^5 ...
atan(x)   = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + 1/9*x^9 - 1/11*x^11 ...
pi        = 16 * atan (1/5) - 4 * atan (1/239)
import Data.Number.CReal

-- algebraic
phi :: CReal
phi = (1 + sqrt 5) / 2

-- transcendental
ramanujan :: CReal
ramanujan = exp (pi * sqrt 163)

main :: IO ()
main = do
  putStrLn $ showCReal 30 pi
  -- 3.141592653589793238462643383279
  putStrLn $ showCReal 30 phi
  -- 1.618033988749894848204586834366
  putStrLn $ showCReal 15 ramanujan
  -- 262537412640768743.99999999999925

SAT Solvers

A collection of constraint problems known as satisfiability problems show up in a number of different disciplines from type checking to package management. Simply put a satisfiability problem attempts to find solutions to a statement of conjoined conjunctions and disjunctions in terms of a series of variables. For example:

(A v ¬B v C) ∧ (B v D v E) ∧ (D v F)

To use the picosat library to solve this, it can be written as zero-terminated lists of integers and fed to the solver according to a number-to-variable relation:

1 -2 3  -- (A v ¬B v C)
2 4 5   -- (B v D v E)
4 6     -- (D v F)
import Picosat

main :: IO [Int]
main = do
  solve [[1, -2, 3], [2,4,5], [4,6]]
  -- Solution [1,-2,3,4,5,6]

The SAT solver itself can be used to solve satisfiability problems with millions of variables in this form and is finely tuned.

See:

SMT Solvers

A generalization of the SAT problem to include predicates other theories gives rise to the very sophisticated domain of “Satisfiability Modulo Theory” problems. The existing SMT solvers are very sophisticated projects ( usually bankrolled by large institutions ) and usually have to be called out to via foreign function interface or via a common interface called SMT-lib. The two most common of use in Haskell are cvc4 from Stanford and z3 from Microsoft Research.

The SBV library can abstract over different SMT solvers to allow us to express the problem in an embedded domain language in Haskell and then offload the solving work to the third party library.

As an example, here’s how you can solve a simple cryptarithm

M O N A D
+ B U R R I T O
= B A N D A I D

using SBV library:

import Data.Foldable
import Data.SBV

-- | val [4,2] == 42
val :: [SInteger] -> SInteger
val = foldr1 (\d r -> d + 10*r) . reverse

puzzle :: Symbolic SBool
puzzle = do
  ds@[b,u,r,i,t,o,m,n,a,d] <- sequenceA [ sInteger [v] | v <- "buritomnad" ]
  constrain $ distinct ds
  for_ ds $ \d -> constrain $ inRange d (0,9)
  pure $    val [b,u,r,r,i,t,o]
          + val     [m,o,n,a,d]
        .== val [b,a,n,d,a,i,d]

Let’s look at all possible solutions,

λ: allSat puzzle
Solution #1:
  b = 4 :: Integer
  u = 1 :: Integer
  r = 5 :: Integer
  i = 9 :: Integer
  t = 7 :: Integer
  o = 0 :: Integer
  m = 8 :: Integer
  n = 3 :: Integer
  a = 2 :: Integer
  d = 6 :: Integer
This is the only solution.

Data Structures

Map

A map is an associative array mapping any instance of Ord keys to values of any type.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)
import qualified Data.Map as Map

kv :: Map.Map Integer String
kv = Map.fromList [(1, "a"), (2, "b")]

lkup :: Integer -> String -> String
lkup key def =
  case Map.lookup key kv of
    Just val -> val
    Nothing  -> def

Tree

A tree is directed graph with a single root.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)
import Data.Tree

{-

   A
  / \
 B   C
    / \
   D   E

-}

tree :: Tree String
tree = Node "A" [Node "B" [], Node "C" [Node "D" [], Node "E" []]]

postorder :: Tree a -> [a]
postorder (Node a ts) = elts ++ [a]
  where elts = concat (map postorder ts)

preorder :: Tree a -> [a]
preorder (Node a ts) = a : elts
  where elts = concat (map preorder ts)

ex1 = drawTree tree
ex2 = drawForest (subForest tree)
ex3 = flatten tree
ex4 = levels tree
ex5 = preorder tree
ex6 = postorder tree

Set

Sets are unordered data structures containing Ord values of any type and guaranteeing uniqueness with in the structure. They are not identical to the mathematical notion of a Set even though they share the same namesake.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Insertion insert O(log(n))
Deletion delete O(log(n))
Traversal traverse O(n)
Membership Test member O(log(n))
import qualified Data.Set as Set

set :: Set.Set Integer
set = Set.fromList [1..1000]

memtest :: Integer -> Bool
memtest elt = Set.member elt set

Vector

Vectors are high performance single dimensional arrays that come come in six variants, two for each of the following types of a mutable and an immutable variant.

Functionality Function Time Complexity
Initialization empty O(1)
Size length O(1)
Indexing (!) O(1)
Append append O(n)
Traversal traverse O(n)

The most notable feature of vectors is constant time memory access with ((!)) as well as variety of efficient map, fold and scan operations on top of a fusion framework that generates surprisingly optimal code.

fromList :: [a] -> Vector a
toList :: Vector a -> [a]
(!) :: Vector a -> Int -> a
map :: (a -> b) -> Vector a -> Vector b
foldl :: (a -> b -> a) -> a -> Vector b -> a
scanl :: (a -> b -> a) -> a -> Vector b -> Vector a
zipWith :: (a -> b -> c) -> Vector a -> Vector b -> Vector c
iterateN :: Int -> (a -> a) -> a -> Vector a
import Data.Vector.Unboxed as V

norm ::  Vector Double -> Double
norm = sqrt . V.sum . V.map (\x -> x*x)

example1 :: Double
example1 = norm $ V.iterateN 100000000 (+1) 0.0

Mutable Vectors

Mutable vectors are variants of vectors which allow inplace updates.

Functionality Function Time Complexity
Initialization empty O(1)
Size length O(1)
Indexing (!) O(1)
Append append O(n)
Traversal traverse O(n)
Update modify O(1)
Read read O(1)
Write write O(1)
freeze :: MVector (PrimState m) a -> m (Vector a)
thaw :: Vector a -> MVector (PrimState m) a

Within the IO monad we can perform arbitrary read and writes on the mutable vector with constant time reads and writes. When needed a static Vector can be created to/from the MVector using the freeze/thaw functions.

import GHC.Prim
import Control.Monad
import Control.Monad.ST
import Control.Monad.Primitive

import Data.Vector.Unboxed (freeze)
import Data.Vector.Unboxed.Mutable
import qualified Data.Vector.Unboxed as V

example :: PrimMonad m => m (V.Vector Int)
example = do
  v <- new 10
  forM_ [0..9] $ \i ->
     write v i (2*i)
  freeze v

-- vector computation in IO
vecIO :: IO (V.Vector Int)
vecIO = example

-- vector computation in ST
vecST :: ST s (V.Vector Int)
vecST = example


main :: IO ()
main = do
  vecIO >>= print
  print $ runST vecST

The vector library itself normally does bounds checks on index operations to protect against memory corruption. This can be enabled or disabled on the library level by compiling with boundschecks cabal flag.

Unordered Containers

Both the HashMap and HashSet are purely functional data structures that are drop in replacements for the containers equivalents but with more efficient space and time performance. Additionally all stored elements must have a Hashable instance. These structures have different time complexities for insertions and lookups.

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)
fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
import qualified Data.HashSet as S
import qualified Data.HashMap.Lazy as M

example1 :: M.HashMap Int Char
example1 = M.fromList $ zip [1..10] ['a'..]

example2 :: S.HashSet Int
example2 = S.fromList [1..10]

See: Announcing Unordered Containers

Hashtables

Hashtables provides hashtables with efficient lookup within the ST or IO monad. These have constant time lookup like most languages:

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(1)
Insertion insert O(1) amortized
Traversal traverse O(n)
import Prelude hiding (lookup)

import Control.Monad.ST
import Data.HashTable.ST.Basic

-- Hashtable parameterized by ST "thread"
type HT s = HashTable s String String

set :: ST s (HT s)
set = do
  ht <- new
  insert ht "key" "value1"
  return ht

get :: HT s -> ST s (Maybe String)
get ht = do
  val <- lookup ht "key"
  return val

example :: Maybe String
example = runST (set >>= get)
new :: ST s (HashTable s k v)
insert :: (Eq k, Hashable k) => HashTable s k v -> k -> v -> ST s ()
lookup :: (Eq k, Hashable k) => HashTable s k v -> k -> ST s (Maybe v)

Graphs

The Graph module in the containers library is a somewhat antiquated API for working with directed graphs. A little bit of data wrapping makes it a little more straightforward to use. The library is not necessarily well-suited for large graph-theoretic operations but is perfectly fine for example, to use in a typechecker which needs to resolve strongly connected components of the module definition graph.

import Data.Tree
import Data.Graph

data Grph node key = Grph
  { _graph :: Graph
  , _vertices :: Vertex -> (node, key, [key])
  }

fromList :: Ord key => [(node, key, [key])] -> Grph node key
fromList = uncurry Grph . graphFromEdges'

vertexLabels :: Functor f => Grph b t -> (f Vertex) -> f b
vertexLabels g = fmap (vertexLabel g)

vertexLabel :: Grph b t -> Vertex -> b
vertexLabel g = (\(vi, _, _) -> vi) . (_vertices g)

-- Topologically sort graph
topo' :: Grph node key -> [node]
topo' g = vertexLabels g $ topSort (_graph g)

-- Strongly connected components of graph
scc' :: Grph node key -> [[node]]
scc' g = fmap (vertexLabels g . flatten) $ scc (_graph g)

So for example we can construct a simple graph:

ex1 :: [(String, String, [String])]
ex1 = [
    ("a","a",["b"]),
    ("b","b",["c"]),
    ("c","c",["a"])
  ]

ts1 :: [String]
ts1 = topo' (fromList ex1)
-- ["a","b","c"]

sc1 :: [[String]]
sc1 = scc' (fromList ex1)
-- [["a","b","c"]]

Or with two strongly connected subgraphs:

ex2 :: [(String, String, [String])]
ex2 = [
    ("a","a",["b"]),
    ("b","b",["c"]),
    ("c","c",["a"]),

    ("d","d",["e"]),
    ("e","e",["f", "e"]),
    ("f","f",["d", "e"])
  ]


ts2 :: [String]
ts2 = topo' (fromList ex2)
-- ["d","e","f","a","b","c"]

sc2 :: [[String]]
sc2 = scc' (fromList ex2)
-- [["d","e","f"],["a","b","c"]]

See: GraphSCC

Graph Theory

The fgl library provides a more efficient graph structure and a wide variety of common graph-theoretic operations. For example calculating the dominance frontier of a graph shows up quite frequently in control flow analysis for compiler design.

import qualified Data.Graph.Inductive as G

cyc3 :: G.Gr Char String
cyc3 = G.buildGr
       [([("ca",3)],1,'a',[("ab",2)]),
                ([],2,'b',[("bc",3)]),
                ([],3,'c',[])]

-- Loop query
ex1 :: Bool
ex1 = G.hasLoop x

-- Dominators
ex2 :: [(G.Node, [G.Node])]
ex2 = G.dom x 0
x :: G.Gr Int ()
x = G.insEdges edges gr
  where
  gr = G.insNodes nodes G.empty
  edges = [(0,1,()), (0,2,()), (2,1,()), (2,3,())]
  nodes = zip [0,1 ..] [2,3,4,1]

DList

Functionality Function Time Complexity
Initialization empty O(1)
Size size O(1)
Lookup lookup O(log(n))
Insertion insert O(log(n))
Traversal traverse O(n)
Append (|>) O(1)
Prepend (<|) O(1)

A dlist is a list-like structure that is optimized for O(1) append operations, internally it uses a Church encoding of the list structure. It is specifically suited for operations which are append-only and need only access it when manifesting the entire structure. It is particularly well-suited for use in the Writer monad.

import Data.DList
import Control.Monad
import Control.Monad.Writer

logger :: Writer (DList Int) ()
logger = replicateM_ 100000 $ tell (singleton 0)

Sequence

The sequence data structure behaves structurally similar to list but is optimized for append/prepend operations and traversal.

import Data.Sequence

a :: Seq Int
a = fromList [1,2,3]

a0 :: Seq Int
a0 = a |> 4
-- [1,2,3,4]

a1 :: Seq Int
a1 = 0 <| a
-- [0,1,2,3]

FFI

Haskell does not exist in a vacuum and will quite often need to interact with or offload computation to another programming language. Since GHC itself is built on the GCC ecosystem interfacing with libraries that can be linked via a C ABI is quite natural. Indeed many high performance libraries will call out to Fortran, C, or C++ code to perform numerical computations that can be linked seamlessly into the Haskell runtime. There are several approaches to combining Haskell with other languages in the via the Foreign Function Interface or FFI.

Pure Functions

Wrapping pure C functions with primitive types is trivial.

/* $(CC) -c simple.c -o simple.o */

int example(int a, int b)
{
  return a + b;
}
-- ghc simple.o simple_ffi.hs -o simple_ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.C.Types

foreign import ccall safe "example" example
    :: CInt -> CInt -> CInt

main = print (example 42 27)

Storable Arrays

There exists a Storable typeclass that can be used to provide low-level access to the memory underlying Haskell values. Ptr objects in Haskell behave much like C pointers although arithmetic with them is in terms of bytes only, not the size of the type associated with the pointer ( this differs from C).

The Prelude defines Storable interfaces for most of the basic types as well as types in the Foreign.Storable module.

class Storable a where
  sizeOf :: a -> Int
  alignment :: a -> Int
  peek :: Ptr a -> IO a
  poke :: Ptr a -> a -> IO ()

To pass arrays from Haskell to C we can again use Storable Vector and several unsafe operations to grab a foreign pointer to the underlying data that can be handed off to C. Once we’re in C land, nothing will protect us from doing evil things to memory!

/* $(CC) -c qsort.c -o qsort.o */
void swap(int *a, int *b)
{
    int t = *a;
    *a = *b;
    *b = t;
}

void sort(int *xs, int beg, int end)
{
    if (end > beg + 1) {
        int piv = xs[beg], l = beg + 1, r = end;

        while (l < r) {
            if (xs[l] <= piv) {
                l++;
            } else {
                swap(&xs[l], &xs[--r]);
            }
        }

        swap(&xs[--l], &xs[beg]);
        sort(xs, beg, l);
        sort(xs, r, end);
    }
}
-- ghc qsort.o ffi.hs -o ffi
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign.Ptr
import Foreign.C.Types

import qualified Data.Vector.Storable as V
import qualified Data.Vector.Storable.Mutable as VM

foreign import ccall safe "sort" qsort
    :: Ptr a -> CInt -> CInt -> IO ()

main :: IO ()
main = do
  let vs = V.fromList ([1,3,5,2,1,2,5,9,6] :: [CInt])
  v <- V.thaw vs
  VM.unsafeWith v $ \ptr -> do
    qsort ptr 0 9
  out <- V.freeze v
  print out

The names of foreign functions from a C specific header file can be qualified.

foreign import ccall unsafe "stdlib.h malloc"
    malloc :: CSize -> IO (Ptr a)

Prepending the function name with a & allows us to create a reference to the function pointer itself.

foreign import ccall unsafe "stdlib.h &malloc"
    malloc :: FunPtr a

Function Pointers

Using the above FFI functionality, it’s trivial to pass C function pointers into Haskell, but what about the inverse passing a function pointer to a Haskell function into C using foreign import ccall "wrapper".

#include <stdio.h>

void invoke(void (*fn)(int))
{
  int n = 42;
  printf("Inside of C, now we'll call Haskell.\n");
  fn(n);
  printf("Back inside of C again.\n");
}
{-# LANGUAGE ForeignFunctionInterface #-}

import Foreign
import System.IO
import Foreign.C.Types(CInt(..))

foreign import ccall "wrapper"
  makeFunPtr :: (CInt -> IO ()) -> IO (FunPtr (CInt -> IO ()))

foreign import ccall "pointer.c invoke"
  invoke :: FunPtr (CInt -> IO ()) -> IO ()

fn :: CInt -> IO ()
fn n = do
  putStrLn "Hello from Haskell, here's a number passed between runtimes:"
  print n
  hFlush stdout

main :: IO ()
main = do
  fptr <- makeFunPtr fn
  invoke fptr

Will yield the following output:

Inside of C, now we'll call Haskell
Hello from Haskell, here's a number passed between runtimes:
42
Back inside of C again.

hsc2hs

When doing socket level programming, when handling UDP packets there is a packed C struct with a set of fields defined by the Linux kernel. These fields are defined in the following C pseudocode.

struct msghdr {
  void         *msg_name;        /* protocol address */
  socklen_t     msg_namelen;     /* size of protocol address */
  struct iovec *msg_iov;         /* scatter/gather array */
  int           msg_iovlen;      /* # elements in msg_iov */
  void         *msg_control;     /* ancillary data (cmsghdr struct) */
  socklen_t     msg_controllen;  /* length of ancillary data */
  int           msg_flags;       /* flags returned by recvmsg() */
};

If we want to marshall packets to and from Haskell datatypes we need to be able to be able to take a pointer to memory holding the packet message header and scan the memory into native Haskell types. This involves knowing some information about the memory offsets for the packet structure. GHC ships with a tool known as hsc2hs which can be used to read information from C header files to automatically generate the boilerplate instances of Storable to perform this marshalling. The hsc2hs library acts a preprocessor over .hsc files and can fill in information as specific by several macros to generate Haskell source.

#include <file.h>
#const <C_expression>
#peek <struct_type>, <field>
#poke <struct_type>, <field>

For example the following module from the network library must introspect the msghdr struct from <sys/socket.h>.

#include <sys/types.h>
#include <sys/socket.h>

import Network.Socket.Imports
import Network.Socket.Internal (zeroMemory)
import Network.Socket.Types (SockAddr)

import Network.Socket.ByteString.IOVec (IOVec)

data MsgHdr = MsgHdr
    { msgName    :: !(Ptr SockAddr)
    , msgNameLen :: !CUInt
    , msgIov     :: !(Ptr IOVec)
    , msgIovLen  :: !CSize
    }

instance Storable MsgHdr where
  sizeOf _    = (#const sizeof(struct msghdr))
  alignment _ = alignment (undefined :: CInt)

  peek p = do
    name       <- (#peek struct msghdr, msg_name)       p
    nameLen    <- (#peek struct msghdr, msg_namelen)    p
    iov        <- (#peek struct msghdr, msg_iov)        p
    iovLen     <- (#peek struct msghdr, msg_iovlen)     p
    return $ MsgHdr name nameLen iov iovLen

  poke p mh = do
    zeroMemory p (#const sizeof(struct msghdr))
    (#poke struct msghdr, msg_name)       p (msgName       mh)
    (#poke struct msghdr, msg_namelen)    p (msgNameLen    mh)
    (#poke struct msghdr, msg_iov)        p (msgIov        mh)
    (#poke struct msghdr, msg_iovlen)     p (msgIovLen     mh)

Running the command line tool over this module we get the following Haskell output Example.hs. This can also be run as part of a Cabal build step by including hsc2hs in your build-tools.

$ hsc2hs Example.hsc
import Network.Socket.ByteString.IOVec (IOVec)
import Network.Socket.Imports
import Network.Socket.Internal (zeroMemory)
import Network.Socket.Types (SockAddr)

data MsgHdr
  = MsgHdr
      { msgName :: !(Ptr SockAddr),
        msgNameLen :: !CUInt,
        msgIov :: !(Ptr IOVec),
        msgIovLen :: !CSize
      }

instance Storable MsgHdr where
  sizeOf _ = (56)
  alignment _ = alignment (undefined :: CInt)
  peek p = do
    name <- ((\hsc_ptr -> peekByteOff hsc_ptr 0)) p
    nameLen <- ((\hsc_ptr -> peekByteOff hsc_ptr 8)) p
    iov <- ((\hsc_ptr -> peekByteOff hsc_ptr 16)) p
    iovLen <- ((\hsc_ptr -> peekByteOff hsc_ptr 24)) p
    return $ MsgHdr name nameLen iov iovLen

  poke p mh = do
    zeroMemory p (56)
    ((\hsc_ptr -> pokeByteOff hsc_ptr 0)) p (msgName mh)
    ((\hsc_ptr -> pokeByteOff hsc_ptr 8)) p (msgNameLen mh)
    ((\hsc_ptr -> pokeByteOff hsc_ptr 16)) p (msgIov mh)
    ((\hsc_ptr -> pokeByteOff hsc_ptr 24)) p (msgIovLen mh)

Concurrency

GHC Haskell has an extremely advanced parallel runtime that embraces several different models of concurrency to adapt to needs for different domains. Unlike other languages Haskell does not have any Global Interpreter Lock or equivalent. Haskell code can be executed in a multi-threaded context and have shared mutable state and communication channels between threads.

A thread in Haskell is created by forking off from the main process using the forkIO command. This is performed within the IO monad and yields a ThreadId which can be used to communicate with the new thread.

forkIO :: IO () -> IO ThreadId

Haskell threads are extremely cheap to spawn, using only 1.5KB of RAM depending on the platform and are much cheaper than a pthread in C. Calling forkIO 106 times completes just short of 1s. Additionally, functional purity in Haskell also guarantees that a thread can almost always be terminated even in the middle of a computation without concern.

See:

Sparks

The most basic “atom” of parallelism in Haskell is a spark. It is a hint to the GHC runtime that a computation can be evaluated to weak head normal form in parallel.

rpar :: a -> Eval a
rseq :: Strategy a
rdeepseq :: NFData a => Strategy a

runEval :: Eval a -> a

rpar a spins off a separate spark that evaluates a to weak head normal form and places the computation in the spark pool. When the runtime determines that there is an available CPU to evaluate the computation it will evaluate ( convert ) the spark. If the main thread of the program is the evaluator for the spark, the spark is said to have fizzled. Fizzling is generally bad and indicates that the logic or parallelism strategy is not well suited to the work that is being evaluated.

The spark pool is also limited ( but user-adjustable ) to a default of 8000 (as of GHC 7.8.3 ). Sparks that are created beyond that limit are said to overflow.

-- Evaluates the arguments to f in parallel before application.
par2 f x y = x `rpar` y `rpar` f x y

An argument to rseq forces the evaluation of a spark before evaluation continues.

Action Description
Fizzled The resulting value has already been evaluated by the main thread so the spark need not be converted.
Dud The expression has already been evaluated, the computed value is returned and the spark is not converted.
GC'd The spark is added to the spark pool but the result is not referenced, so it is garbage collected.
Overflowed Insufficient space in the spark pool when spawning.

The parallel runtime is necessary to use sparks, and the resulting program must be compiled with -threaded. Additionally the program itself can be specified to take runtime options with -rtsopts such as the number of cores to use.

ghc -threaded -rtsopts program.hs
./program +RTS -s N8 -- use 8 cores

The runtime can be asked to dump information about the spark evaluation by passing the -s flag.

$ ./spark +RTS -N4 -s

                                    Tot time (elapsed)  Avg pause  Max pause
  Gen  0         5 colls,     5 par    0.02s    0.01s     0.0017s    0.0048s
  Gen  1         3 colls,     2 par    0.00s    0.00s     0.0004s    0.0007s

  Parallel GC work balance: 1.83% (serial 0%, perfect 100%)

  TASKS: 6 (1 bound, 5 peak workers (5 total), using -N4)

  SPARKS: 20000 (20000 converted, 0 overflowed, 0 dud, 0 GC'd, 0 fizzled)

The parallel computations themselves are sequenced in the Eval monad, whose evaluation with runEval is itself a pure computation.

example :: (a -> b) -> a -> a -> (b, b)
example f x y = runEval $ do
  a <- rpar $ f x
  b <- rpar $ f y
  rseq a
  rseq b
  return (a, b)

Threads

For fine-grained concurrency and parallelism, Haskell has a lightweight thread system that schedules logical threads on the available operating system threads. These lightweight threads are called unbound threads, while native operating systems are called bound threads since they are bound to a single operating system thread. The functions to spawn an run tasks inside these threads all live in the IO monad. The number of possible simultaneous threads is given by the getNumCapabilities functions based on the system environment.

forkIO :: IO () -> IO ThreadId
forkOS :: IO () -> IO ThreadId
runInBoundThread :: IO a -> IO a
runInUnboundThread :: IO a -> IO a
getNumCapabilities :: IO Int
isCurrentThreadBound :: IO Bool

Managed threads work with the runtime system’s IO manager which will schedule and manage cooperative multitaksing and polling. When a individual unbound thread is blocked polling on a file description or lock it will yield to another runnable thread managed by the runtime. This yield action can also be explicitly invoked with the yield function. A thread can also schedule a wait using threadDelay to yield to the scheduler for a fixed interval given in microseconds.

yield :: IO ()
threadDelay :: Int -> IO ()

Once a thread is forked the fork action will give back a ThreadId which can be used to call actions and kill the thread from another context. Inside of a running thread the current ThreadId can be queried with myThreadId.

myThreadId :: IO ThreadId
killThread :: ThreadId -> IO ()

An exception can also be raised in a given ThreadId given an instance of Exception typeclass.

throwTo :: Exception e => ThreadId -> e -> IO ()

When individually polling on file descriptors there are several functions that can schedule the thread to wake up again when the given file is given a wake event from the kernel. The following functions will yield the current thread waiting on either a read or write event on the given file description Fd.

threadWaitRead :: Fd -> IO ()
threadWaitWrite :: Fd -> IO ()

IORef

IORef is a mutable reference that can be read and writen to within the IO monad. It is the simplest most low-level mutable reference provided by the base library.

newIORef :: a -> IO (IORef a)
writeIORef :: IORef a -> a -> IO ()
readIORef :: IORef a -> IO a
modifyIORef' :: IORef a -> (a -> a) -> IO ()

For example we could construct two IORefs which mutably hold the balances for two imaginary bank accounts. These references can be passed to another IO function which can update the values in place.

import Data.IORef

example :: IO Integer
example = do
  account1 <- newIORef 5000
  account2 <- newIORef 1000
  transfer 500 account1 account2
  readIORef account1

transfer :: Integer -> IORef Integer -> IORef Integer -> IO ()
transfer n from to = do
  modifyIORef from (+ (-n))
  modifyIORef to (+ n)

There are also several atomic functions to update IORef when working with the threaded runtime.

atomicWriteIORef :: IORef a -> a -> IO ()
atomicModifyIORef :: IORef a -> (a -> (a, b)) -> IO b

The atomic modify function atomicModifyIORef reads the value of r and applies the function f to r giving back (a',b). Then value r is updated with the new value a' and b is the return value. Both the read and the write are done atomically so it is not possible that any value will alter the underlying IORef between the read and write.

Normally IORef is garbage collected like any other value. Once it is out of scope and the runtime has no more references to it, the runtime will collect the thunk holding the IORef as well as the value the underlying pointer points at. Sometimes when working with these references will require adding additional finalisation logic.

mkWeakIORef :: IORef a -> IO () -> IO (Weak (IORef a))

The mkWeakIORef attaches a finalizer function in the second argument which is run when the value is garbage collected.

MVars

MVars are mutable references like IORefs that can be used to share mutable state between threads. An MVar has two states empty and full. Reading from an empty MVar will block the current thread. Writing to a full MVar will also block the current thread. Thus only one value can be held inside the MVar allowing us to synchronize the value across threads. MVars are building blocks for many higher concurrent primitives which use them under the hood.

An MVar can either be initialised in an empty state or with a supplied value.

newEmptyMVar :: IO (MVar a)
newMVar :: a -> IO (MVar a)

The function takeMVar operates like a read returning the value, but once the value is read the state of the underlying MVar is left empty. This read is performed once for the first thread to wake up polling for the read.

takeMVar :: MVar a -> IO a
putMVar :: MVar a -> a -> IO ()
readMVar :: MVar a -> IO a
swapMVar :: MVar a -> a -> IO a
isEmptyMVar :: MVar a -> IO Bool

As an example consider a multithreaded scenario where a second thread is created which polls on atomically on an MVar update.

import Control.Concurrent
import Control.Monad
import Prelude hiding (take)

take :: MVar [Char] -> IO ()
take m = forever $ do
  x <- takeMVar m
  putStrLn x

put :: MVar [Char] -> IO ()
put m = do
  replicateM_ 10 $ do
    threadDelay 100000
    putMVar m "Value set."

example :: IO ()
example = do
  m <- newEmptyMVar
  forkIO (take m)
  put m

If a thread is left sleeping waiting on an MVar and the runtime no longer has any references to code which can write to the MRef (i.e. all references to the MVar are garbage collected) the thread will be thrown the exception BlockedIndefinitelyOnMVar since no value can subsequently be written to it.

TVar

TVars are transactional mutable variables which can be read and written to within in the STM monad. The STM monad provides support for Software Transactional Memory which is a higher level abstraction for concurrent communication that doesn’t require explict thread maintenance and has lovely easy compositional nature.

The STM monad magically hooks into the runtime system and provides two key operations atomically and retry which allow monadic blocks of STM actions to be performed atomically and passed around symbolically. In the event that the runtime fails to commit a transaction, the retry function can rerun the logic contained in a STM a.

atomically :: STM a -> IO a
retry :: STM a

TVars can be created just like IORefs but instead of being in IO they can also be created with the STM monad.

newTVar :: a -> STM (TVar a)
newTVarIO :: a -> IO (TVar a)

Read, writes and updates proceed exactly like IORef updates but inside of STM.

readTVar :: TVar a -> STM a
writeTVar :: TVar a -> a -> STM ()
modifyTVar :: TVar a -> (a -> a) -> STM ()

As an example consider the IORef account transfers from above, but instead the two modifyTVar actions are performed atomically inside of the transfer function.

import Control.Concurrent
import Control.Concurrent.STM
import Control.Concurrent.STM.TVar

example :: IO Integer
example = do
  account1 <- atomically $ newTVar 5000
  account2 <- atomically $ newTVar 1000
  atomically (transfer 500 account1 account2)
  readTVarIO account1

transfer :: Integer -> TVar Integer -> TVar Integer -> STM ()
transfer n from to = do
  modifyTVar from (+ (-n))
  modifyTVar to (+ n)

There is an additional TMVar which behaves precisely like the traditional MVar (i.e. it has an empty and full state) but which is embedded in IO. It is has precisely the same semantics as MVar but emits values within STM.

-- Control.Concurrent.STM.TMVar
newTMVar :: a -> STM (TMVar a)
putTMVar :: TMVar a -> a -> STM ()
takeTMVar :: TMVar a -> STM a

Chans

Channels are unbounded queues to which an unbounded number of values can be written an unbounded number of times. Channels are implemented using MVars and can be consumed by any number of other threads which read data off of the Chan. Channels are created, read from and written to using a simple new, read and write interface just as we’ve seen with other concurrency primitives.

newChan :: IO (Chan a)
readChan :: Chan a -> IO a
writeChan :: Chan a -> a -> IO ()

An example in which a channel is created between a producer and consumer threads is shown below. This can be used to share data between threads and create work queue background processing systems.

import System.IO
import Control.Monad
import Control.Concurrent
import Control.Concurrent.Chan

producer :: Chan Integer -> IO ()
producer chan = forM_ [0 .. 1000] $ \i -> do
  writeChan chan i
  putStrLn "Writing to channel."

consumer :: Chan Integer -> IO ()
consumer chan = forever $ do
  val <- readChan chan
  thread <- myThreadId
  putStrLn ("Recieved item in thread: " ++ show thread)
  print val

example :: IO ()
example = do
  chan <- newChan
  forkIO (consumer chan)
  forkIO (consumer chan)
  forkIO (consumer chan)
  forkIO (producer chan)
  pure ()

main :: IO ()
main = do
  hSetBuffering stdout LineBuffering
  example

There is also an STM variant of Chan called TChan.

newTChan :: STM (TChan a)
readTChan :: TChan a -> STM a
writeTChan :: TChan a -> a -> STM ()

Semaphores

Semaphores are a concurrency primitive used to control access to a common resource used by multiple threads. A semaphore is a variable containing an integral value that can be incremented or decremented by concurrent processes. A semaphore will restrict concurrency to a integral count of consumers called the limit. The QSem provides an interface for a simple lock semaphore that can be created in IO and polled on using waitQSem.

newQSem :: Int -> IO QSem
waitQSem :: QSem -> IO ()
signalQSem :: QSem -> IO ()

A simple example of usage:

import Control.Concurrent
import Control.Concurrent.QSem

task :: Integer -> QSem -> IO ()
task index sem = do
  waitQSem sem
  forkIO $ putStrLn ("Thread: " ++ show index ++ "\n")
  signalQSem sem

example :: IO ()
example = do
  sem <- newQSem 1
  forkIO (task 1 sem)
  forkIO (task 2 sem)
  forkIO (task 3 sem)
  return ()

QSem also have a variant QSemN which allows a resource to be acquired and released in a fixed quantity other than one. The waitQSemN function then takes an integral quantity to wait for.

newQSemN :: Int -> IO QSemN
waitQSemN :: QSemN -> Int -> IO ()

There is also an STM variant of QSem called TSem which has the same semantics.

newTSem :: Integer -> STM TSem
waitTSem :: TSem -> STM ()

Threadscope

Passing the flag -l generates the eventlog which can be rendered with the threadscope library.

$ ghc -O2 -threaded -rtsopts -eventlog Example.hs
$ ./program +RTS -N4 -l
$ threadscope Example.eventlog

See:

Strategies

Sparks themselves form the foundation for higher level parallelism constructs known as strategies which adapt spark creation to fit the computation or data structure being evaluated. For instance if we wanted to evaluate both elements of a tuple in parallel we can create a strategy which uses sparks to evaluate both sides of the tuple.

type Strategy a = a -> Eval a
using :: a -> Strategy a -> a
import Control.Parallel.Strategies

parPair' :: Strategy (a, b)
parPair' (a, b) = do
  a' <- rpar a
  b' <- rpar b
  return (a', b')

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: (Int, Int)
serial   = (fib 30, fib 31)

parallel :: (Int, Int)
parallel = runEval . parPair' $ (fib 30, fib 31)

This pattern occurs so frequently the combinator using can be used to write it equivalently in operator-like form that may be more visually appealing to some.

using :: a -> Strategy a -> a
x `using` s = runEval (s x)

parallel ::: (Int, Int)
parallel = (fib 30, fib 31) `using` parPair

For a less contrived example consider a parallel parmap which maps a pure function over a list of a values in parallel.

import Control.Parallel.Strategies

parMap' :: (a -> b) -> [a] -> Eval [b]
parMap' f [] = return []
parMap' f (a:as) = do
  b  <- rpar (f a)
  bs <- parMap' f as
  return (b:bs)

result :: [Int]
result = runEval $ parMap' (+1) [1..1000]

The functions above are quite useful, but will break down if evaluation of the arguments needs to be parallelized beyond simply weak head normal form. For instance if the arguments to rpar is a nested constructor we’d like to parallelize the entire section of work in evaluated the expression to normal form instead of just the outer layer. As such we’d like to generalize our strategies so the evaluation strategy for the arguments can be passed as an argument to the strategy.

Control.Parallel.Strategies contains a generalized version of rpar which embeds additional evaluation logic inside the rpar computation in Eval monad.

rparWith :: Strategy a -> Strategy a

Using the deepseq library we can now construct a Strategy variant of rseq that evaluates to full normal form.

rdeepseq :: NFData a => Strategy a
rdeepseq x = rseq (force x)

We now can create a “higher order” strategy that takes two strategies and itself yields a computation which when evaluated uses the passed strategies in its scheduling.

import Control.DeepSeq
import Control.Parallel.Strategies

evalPair :: Strategy a -> Strategy b -> Strategy (a, b)
evalPair sa sb (a, b) = do
  a' <- sa a
  b' <- sb b
  return (a', b')

parPair :: Strategy a -> Strategy b -> Strategy (a, b)
parPair sa sb = evalPair (rparWith sa) (rparWith sb)

fib :: Int -> Int
fib 0 = 0
fib 1 = 1
fib n = fib (n-1) + fib (n-2)

serial :: ([Int], [Int])
serial = (a, b)
  where
    a = fmap fib [0..30]
    b = fmap fib [1..30]

parallel :: ([Int], [Int])
parallel = (a, b) `using` evalPair rdeepseq rdeepseq
  where
    a = fmap fib [0..30]
    b = fmap fib [1..30]

These patterns are implemented in the Strategies library along with several other general forms and combinators for combining strategies to fit many different parallel computations.

parTraverse :: Traversable t => Strategy a -> Strategy (t a)
dot :: Strategy a -> Strategy a -> Strategy a
($||) :: (a -> b) -> Strategy a -> a -> b
(.||) :: (b -> c) -> Strategy b -> (a -> b) -> a -> c

See:

STM

Software transactional memory is a technique for demarcating blocks of atomic transactions that are guaranteed by the runtime to have several properties:

This is similar to the atomicity that databases guarantee. The stm library provides a lovely compositional interface for building up higher level primitives that can be composed in atomic blocks to build safe concurrent logic without worrying about deadlocks and memory corruption from threaded and mutable reference approaches to building parallel algorithms.

atomically :: STM a -> IO a
orElse :: STM a -> STM a -> STM a
retry :: STM a

newTVar :: a -> STM (TVar a)
newTVarIO :: a -> IO (TVar a)
writeTVar :: TVar a -> a -> STM ()
readTVar :: TVar a -> STM a

modifyTVar :: TVar a -> (a -> a) -> STM ()
modifyTVar' :: TVar a -> (a -> a) -> STM ()

The strength of Haskell’s purity guarantees that transactions within STM are pure and can always be rolled back if a commit fails. An example of usage is shown below.

import Control.Monad
import Control.Concurrent
import Control.Concurrent.STM

type Account = TVar Double

transfer :: Account -> Account -> Double -> STM ()
transfer from to amount = do
  available <- readTVar from
  when (amount > available) retry

  modifyTVar from (+ (-amount))
  modifyTVar to   (+ amount)

-- Threads are scheduled non-deterministically.
actions :: Account -> Account -> [IO ThreadId]
actions a b = map forkIO [
     -- transfer to
       atomically (transfer a b 10)
     , atomically (transfer a b (-20))
     , atomically (transfer a b 30)

     -- transfer back
     , atomically (transfer a b (-30))
     , atomically (transfer a b 20)
     , atomically (transfer a b (-10))
   ]

main :: IO ()
main = do
  accountA <- atomically $ newTVar 60
  accountB <- atomically $ newTVar 0

  sequence_ (actions accountA accountB)

  balanceA <- atomically $ readTVar accountA
  balanceB <- atomically $ readTVar accountB

  print $ balanceA == 60
  print $ balanceB == 0

Monad Par

Using the Par monad we express our computation as a data flow graph which is scheduled in order of the connections between forked computations which exchange resulting computations with IVar.

new :: Par (IVar a)
put :: NFData a => IVar a -> a -> Par ()
get :: IVar a -> Par a
fork :: Par () -> Par ()
spawn :: NFData a => Par a -> Par (IVar a)

{-# LANGUAGE NoMonadFailDesugaring #-}

import Control.Monad
import Control.Monad.Par

f , g :: Int -> Int
f x = x + 10
g x = x * 10

--   f x      g x
--     \     /
--      a + b
--      /   \
-- f (a+b)  g (a+b)
--      \   /
--      (d,e)

example1 :: Int -> (Int, Int)
example1 x = runPar $ do
  [a, b, c, d, e] <- replicateM 5 new
  fork (put a (f x))
  fork (put b (g x))
  a' <- get a
  b' <- get b
  fork (put c (a' + b'))
  c' <- get c
  fork (put d (f c'))
  fork (put e (g c'))
  d' <- get d
  e' <- get e
  return (d', e')

example2 :: [Int]
example2 = runPar $ do
  xs <- parMap (+ 1) [1 .. 25]
  return xs

-- foldr (+) 0 (map (^2) [1..xs])
example3 :: Int -> Int
example3 n = runPar $ do
  let range = (InclusiveRange 1 n)
  let mapper x = return (x ^ 2)
  let reducer x y = return (x + y)
  parMapReduceRangeThresh 10 range mapper reducer 0

Async

Async is a higher level set of functions that work on top of Control.Concurrent and STM.

async :: IO a -> IO (Async a)
wait :: Async a -> IO a
cancel :: Async a -> IO ()
concurrently :: IO a -> IO b -> IO (a, b)
race :: IO a -> IO b -> IO (Either a b)
import Control.Monad
import Control.Applicative
import Control.Concurrent
import Control.Concurrent.Async
import Data.Time

timeit :: IO a -> IO (a,Double)
timeit io = do
  t0 <- getCurrentTime
  a <- io
  t1 <- getCurrentTime
  return (a, realToFrac (t1 `diffUTCTime` t0))

worker :: Int -> IO Int
worker n = do
  -- simulate some work
  threadDelay (10^2 * n)
  return (n * n)

-- Spawn 2 threads in parallel, halt on both finished.
test1 :: IO (Int, Int)
test1 = do
  val1 <- async $ worker 1000
  val2 <- async $ worker 2000
  (,) <$> wait val1 <*> wait val2

-- Spawn 2 threads in parallel, halt on first finished.
test2 :: IO (Either Int Int)
test2 = do
  let val1 = worker 1000
  let val2 = worker 2000
  race val1 val2

-- Spawn 10000 threads in parallel, halt on all finished.
test3 :: IO [Int]
test3 = mapConcurrently worker [0..10000]

main :: IO ()
main = do
  print =<< timeit test1
  print =<< timeit test2
  print =<< timeit test3

Parsing

Parser combinators were originally developed in the Haskell programming language and the last 10 years have seen a massive amount of refinement and improvements on parser combinator libraries. Today Haskell has an amazing parser ecosystem.

Parsec

For parsing in Haskell it is quite common to use a family of libraries known as Parser Combinators which let us write code to generate parsers which construct themselves from an abstract description of the grammar described with combinators.

Combinators
<|> The choice operator tries to parse the first argument before proceeding to the second.
many Consumes an arbitrary number of expressions matching the given pattern and returns them as a list.
many1 Like many but requires at least one match.
optional Optionally parses a given pattern returning its value as a Maybe.
try Backtracking operator will let us parse ambiguous matching expressions and restart with a different pattern.

<|> can be chained sequentially to generate a sequence of options.

There are two styles of writing Parsec, one can choose to write with monads or with applicatives.

parseM :: Parser Expr
parseM = do
  a <- identifier
  char '+'
  b <- identifier
  return $ Add a b

The same code written with applicatives uses the applicative combinators:

-- | Sequential application.
(<*>) :: f (a -> b) -> f a -> f b

-- | Sequence actions, discarding the value of the first argument.
(*>) :: f a -> f b -> f b
(*>) = liftA2 (const id)

-- | Sequence actions, discarding the value of the second argument.
(<*) :: f a -> f b -> f a
(<*) = liftA2 const
parseA :: Parser Expr
parseA = Add <$> identifier <* char '+' <*> identifier

Now for instance if we want to parse simple lambda expressions we can encode the parser logic as compositions of these combinators which yield the string parser when evaluated with parse.

import Text.Parsec
import Text.Parsec.String

data Expr
  = Var Char
  | Lam Char Expr
  | App Expr Expr
  deriving Show

lam :: Parser Expr
lam = do
  char '\\'
  n <- letter
  string "->"
  e <- expr
  return $ Lam n e

app :: Parser Expr
app = do
  apps <- many1 term
  return $ foldl1 App apps

var :: Parser Expr
var = do
  n <- letter
  return $ Var n

parens :: Parser Expr -> Parser Expr
parens p = do
  char '('
  e <- p
  char ')'
  return e

term :: Parser Expr
term = var <|> parens expr

expr :: Parser Expr
expr = lam <|> app

decl :: Parser Expr
decl = do
  e <- expr
  eof
  return e

test :: IO ()
test = parseTest decl "\\y->y(\\x->x)y"

main :: IO ()
main = test >>= print

Custom Lexer

In our previous example a lexing pass was not necessary because each lexeme mapped to a sequential collection of characters in the stream type. If we wanted to extend this parser with a non-trivial set of tokens, then Parsec provides us with a set of functions for defining lexers and integrating these with the parser combinators. The simplest example builds on top of the builtin Parsec language definitions which define a set of most common lexical schemes.

For instance we’ll build on top of the empty language grammar on top of the haskellDef grammar that uses the Text token instead of string.

{-# LANGUAGE OverloadedStrings #-}

import Text.Parsec
import Text.Parsec.Text
import qualified Text.Parsec.Token as Tok
import qualified Text.Parsec.Language as Lang

import Data.Functor.Identity (Identity)
import qualified Data.Text as T
import qualified Data.Text.IO as TIO

data Expr
  = Var T.Text
  | App Expr Expr
  | Lam T.Text Expr
  deriving (Show)

lexer :: Tok.GenTokenParser T.Text () Identity
lexer = Tok.makeTokenParser style

style :: Tok.GenLanguageDef T.Text () Identity
style = Lang.emptyDef
  { Tok.commentStart    = "{-"
  , Tok.commentEnd      = "-}"
  , Tok.commentLine     = "--"
  , Tok.nestedComments  = True
  , Tok.identStart      = letter
  , Tok.identLetter     = alphaNum <|> oneOf "_'"
  , Tok.opStart         = Tok.opLetter style
  , Tok.opLetter        = oneOf ":!#$%&*+./<=>?@\\^|-~"
  , Tok.reservedOpNames = []
  , Tok.reservedNames   = []
  , Tok.caseSensitive   = True
  }

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reservedOp :: T.Text -> Parser ()
reservedOp op = Tok.reservedOp lexer (T.unpack op)

ident :: Parser T.Text
ident = T.pack <$> Tok.identifier lexer

contents :: Parser a -> Parser a
contents p = do
  Tok.whiteSpace lexer
  r <- p
  eof
  return r

var :: Parser Expr
var = do
  var <- ident
  return (Var var )

app :: Parser Expr
app = do
  e1 <- expr
  e2 <- expr
  return (App e1 e2)

fun :: Parser Expr
fun = do
  reservedOp "\\"
  binder <- ident
  reservedOp "."
  rhs <- expr
  return (Lam binder rhs)

expr :: Parser Expr
expr = do
  es <- many1 aexp
  return (foldl1 App es)

aexp :: Parser Expr
aexp = fun <|> var <|> (parens expr)

test :: T.Text -> Either ParseError Expr
test = parse (contents expr) "<stdin>"

repl :: IO ()
repl = do
  str <- TIO.getLine
  print (test str)
  repl

main :: IO ()
main = repl

See: Text.Parsec.Language

Simple Parsing

Putting our lexer and parser together we can write down a more robust parser for our little lambda calculus syntax.

module Parser (parseExpr) where

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (haskellStyle)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

type Id = String

data Expr
  = Lam Id Expr
  | App Expr Expr
  | Var Id
  | Num Int
  | Op  Binop Expr Expr
  deriving (Show)

data Binop = Add | Sub | Mul deriving Show

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser style
  where ops = ["->","\\","+","*","-","="]
        style = haskellStyle {Tok.reservedOpNames = ops }

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

identifier :: Parser String
identifier = Tok.identifier lexer

parens :: Parser a -> Parser a
parens = Tok.parens lexer

contents :: Parser a -> Parser a
contents p = do
  Tok.whiteSpace lexer
  r <- p
  eof
  return r

natural :: Parser Integer
natural = Tok.natural lexer

variable :: Parser Expr
variable = do
  x <- identifier
  return (Var x)

number :: Parser Expr
number = do
  n <- natural
  return (Num (fromIntegral n))

lambda :: Parser Expr
lambda = do
  reservedOp "\\"
  x <- identifier
  reservedOp "->"
  e <- expr
  return (Lam x e)

aexp :: Parser Expr
aexp =  parens expr
    <|> variable
    <|> number
    <|> lambda

term :: Parser Expr
term = Ex.buildExpressionParser table aexp
  where infixOp x f = Ex.Infix (reservedOp x >> return f)
        table = [[infixOp "*" (Op Mul) Ex.AssocLeft],
                 [infixOp "+" (Op Add) Ex.AssocLeft]]

expr :: Parser Expr
expr = do
  es <- many1 term
  return (foldl1 App es)

parseExpr :: String -> Expr
parseExpr input =
  case parse (contents expr) "<stdin>" input of
    Left err -> error (show err)
    Right ast -> ast

main :: IO ()
main = getLine >>= print . parseExpr >> main

Trying it out:

λ: runhaskell simpleparser.hs
1+2
Op Add (Num 1) (Num 2)

\i -> \x -> x
Lam "i" (Lam "x" (Var "x"))

\s -> \f -> \g -> \x -> f x (g x)
Lam "s" (Lam "f" (Lam "g" (Lam "x" (App (App (Var "f") (Var "x")) (App (Var "g") (Var "x"))))))

Megaparsec

Megaparsec is a generalisation of parsec which can work with the several input streams.

Megaparsec is an expanded and optimised form of parsec which can be used to write much larger complex parsers with custom lexers and Clang-style error message handling.

An example below for the lambda calculus is quite concise:

{-# LANGUAGE OverloadedStrings #-}

import Control.Monad.Combinators
import Data.Text (Text)
import Text.Megaparsec
import Text.Megaparsec.Char

type Parser = Parsec Expr Text

data Expr
  = Var Char
  | Lam Char Expr
  | App Expr Expr
  deriving (Eq, Ord, Show)

instance ShowErrorComponent Expr where
  showErrorComponent = show

lam :: Parser Expr
lam = do
  char '\\'
  n <- letterChar
  string "->"
  e <- expr
  return $ Lam n e

app :: Parser Expr
app = do
  apps <- many term
  return $ foldl1 App apps

var :: Parser Expr
var = do
  n <- letterChar
  return $ Var n

parens :: Parser Expr -> Parser Expr
parens p = do
  char '('
  e <- p
  char ')'
  return e

term :: Parser Expr
term = var <|> parens expr

expr :: Parser Expr
expr = lam <|> app

decl :: Parser Expr
decl = do
  e <- expr
  eof
  return e

example :: Text
example = "\\y->y(\\x->x)y"

main :: IO ()
main = case parse decl "<stdin>" example of
  Left bundle -> putStr (errorBundlePretty bundle)
  Right result -> print result

Attoparsec

Attoparsec is a parser combinator like Parsec but more suited for bulk parsing of large text and binary files instead of parsing language syntax to ASTs. When written properly Attoparsec parsers can be efficient.

One notable distinction between Parsec and Attoparsec is that backtracking operator (try) is not present and reflects on attoparsec’s different underlying parser model.

For a simple little lambda calculus language we can use attoparsec much in the same we used parsec:

{-# LANGUAGE OverloadedStrings #-}
{-# OPTIONS_GHC -fno-warn-unused-do-bind #-}

import Control.Applicative
import Data.Attoparsec.Text
import qualified Data.Text as T
import qualified Data.Text.IO as T
import Data.List (foldl1')

data Name
  = Gen Int
  | Name T.Text
  deriving (Eq, Show, Ord)

data Expr
  = Var Name
  | App Expr Expr
  | Lam [Name] Expr
  | Lit Int
  | Prim PrimOp
  deriving (Eq, Show)

data PrimOp
  = Add
  | Sub
  | Mul
  | Div
  deriving (Eq, Show)

data Defn = Defn Name Expr
  deriving (Eq, Show)

name :: Parser Name
name = Name . T.pack <$> many1 letter

num :: Parser Expr
num = Lit <$> signed decimal

var :: Parser Expr
var = Var <$> name

lam :: Parser Expr
lam = do
  string "\\"
  vars <- many1 (skipSpace *> name)
  skipSpace *> string "->"
  body <- expr
  return (Lam vars body)

eparen :: Parser Expr
eparen = char '(' *> expr <* skipSpace <* char ')'

prim :: Parser Expr
prim = Prim <$> (
      char '+' *> return Add
  <|> char '-' *> return Sub
  <|> char '*' *> return Mul
  <|> char '/' *> return Div)

expr :: Parser Expr
expr = foldl1' App <$> many1 (skipSpace *> atom)

atom :: Parser Expr
atom = try lam
    <|> eparen
    <|> prim
    <|> var
    <|> num

def :: Parser Defn
def = do
  skipSpace
  nm <- name
  skipSpace *> char '=' *> skipSpace
  ex <- expr
  skipSpace <* char ';'
  return $ Defn nm ex

file :: T.Text -> Either String [Defn]
file = parseOnly (many def <* skipSpace)

parseFile :: FilePath -> IO (Either T.Text [Defn])
parseFile path = do
  contents <- T.readFile path
  case file contents of
    Left a -> return $ Left (T.pack a)
    Right b -> return $ Right b

main :: IO (Either T.Text [Defn])
main = parseFile "simple.ml"

For an example try the above parser with the following simple lambda expression.

f = g (x - 1);
g = f (x + 1);
h = \x y -> (f x) + (g y);

Attoparsec adapts very well to binary and network protocol style parsing as well, this is extracted from a small implementation of a distributed consensus network protocol:

{-# LANGUAGE OverloadedStrings #-}

import Control.Monad
import Data.Attoparsec.ByteString
import Data.Attoparsec.ByteString.Char8 as A
import Data.ByteString.Char8

data Action
  = Success
  | KeepAlive
  | NoResource
  | Hangup
  | NewLeader
  | Election
  deriving (Show)

newtype Sender = Sender ByteString
  deriving (Show)

newtype Payload = Payload ByteString
  deriving (Show)

data Message
  = Message
      { action :: Action,
        sender :: Sender,
        payload :: Payload
      }
  deriving (Show)

proto :: Parser Message
proto = do
  act <- paction
  send <- Sender <$> A.takeTill (== '.')
  body <- Payload <$> A.takeTill A.isSpace
  endOfLine
  return $ Message act send body

paction :: Parser Action
paction = do
  c <- anyWord8
  case c of
    1 -> return Success
    2 -> return KeepAlive
    3 -> return NoResource
    4 -> return Hangup
    5 -> return NewLeader
    6 -> return Election
    _ -> mzero

main :: IO ()
main = do
  let msgtext = "\x01\x6c\x61\x70\x74\x6f\x70\x2e\x33\x2e\x31\x34\x31\x35\x39\x32\x36\x35\x33\x35\x0A"
  let msg = parseOnly proto msgtext
  print msg

Configurator

Configurator is a library for configuring Haskell daemons and programs. It uses a simple, but flexible, configuration language, supporting several of the most commonly needed types of data, along with interpolation of strings from the configuration or the system environment.

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import qualified Data.Configurator as C

data Config = Config
  { verbose      :: Bool
  , loggingLevel :: Int
  , logfile      :: FilePath
  , dbHost       :: Text
  , dbUser       :: Text
  , dbDatabase   :: Text
  , dbpassword   :: Maybe Text
  } deriving (Eq, Show)

readConfig :: FilePath -> IO Config
readConfig cfgFile = do
  cfg          <- C.load [C.Required cfgFile]
  verbose      <- C.require cfg "logging.verbose"
  loggingLevel <- C.require cfg "logging.loggingLevel"
  logFile      <- C.require cfg "logging.logfile"
  hostname     <- C.require cfg "database.hostname"
  username     <- C.require cfg "database.username"
  database     <- C.require cfg "database.database"
  password     <- C.lookup cfg "database.password"
  return $ Config verbose loggingLevel logFile hostname username database password

main :: IO ()
main = do
  cfg <-readConfig "example.config"
  print cfg

An example configuration file:

logging 
{
  verbose      = true
  logfile      = "/tmp/app.log"
  loggingLevel = 3
}

database
{
  hostname = "us-east-1.rds.amazonaws.com"
  username = "app"
  database = "booktown"
  password = "hunter2"
}

Configurator also includes an import directive allows the configuration of a complex application to be split across several smaller files, or configuration data to be shared across several applications.

Optparse Applicative

Optparse-applicative is a combinator library for building command line interfaces that take in various user flags, commands and switches and maps them into Haskell data structures that can handle the input. The main interface is through the applicative functor Parser and various combinators such as strArgument and flag which populate the option parsing table with some monadic action which returns a Haskell value. The resulting sequence of values can be combined applicatively into a larger Config data structure that holds all the given options. The --help header is also automatically generated from the combinators.

./optparse
Usage: optparse.hs [filename...] [--quiet] [--cheetah]

Available options:
  -h,--help                Show this help text
  filename...              Input files
  --quiet                  Whether to shut up.
  --cheetah                Perform task quickly.
import Data.List
import Data.Monoid
import Options.Applicative

data Opts = Opts
  { _files :: [String]
  , _quiet :: Bool
  , _fast :: Speed
  }

data Speed = Slow | Fast

options :: Parser Opts
options = Opts <$> filename <*> quiet <*> fast
  where
    filename :: Parser [String]
    filename = many $ argument str $
         metavar "filename..."
      <> help "Input files"

    fast :: Parser Speed
    fast = flag Slow Fast $
         long "cheetah"
      <> help "Perform task quickly."

    quiet :: Parser Bool
    quiet = switch $
         long "quiet"
      <> help "Whether to shut up."

greet :: Opts -> IO ()
greet (Opts files quiet fast) = do
  putStrLn "reading these files:"
  mapM_ print files

  case fast of
    Fast -> putStrLn "quickly"
    Slow -> putStrLn "slowly"

  case quiet of
    True  -> putStrLn "quietly"
    False -> putStrLn "loudly"

opts :: ParserInfo Opts
opts = info (helper <*> options) fullDesc

main :: IO ()
main = execParser opts >>= greet

Optparse Generic

Many optparse-applicative command line parsers can also be generated using Generics from descriptions of records. This approach is not foolproof but works well enough for simple command line applications with a few options. For more complex interfaces with subcommands and help information you’ll need to go back to the optparse-applicative level. For example:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}

import Options.Generic

data Options = Options
  { verbose :: Bool     <?> "Enable verbose mode"
  , input   :: FilePath <?> "Input file"
  , output  :: FilePath <?> "Output file"
  }
  deriving (Generic, Show, ParseRecord)

main :: IO ()
main = do
  opts <- getRecord "My CLI"
  print (opts :: Options)

Happy & Alex

Happy is a parser generator system for Haskell, similar to the tool `yacc’ for C. It works as a preprocessor with its own syntax that generates a parse table from two specifications, a lexer file and parser file. Happy does not have the same underlying parser implementation as parser combinators and can effectively work with left-recursive grammars without explicit factorization. It can also easily be modified to track position information for tokens and handle offside parsing rules for indentation-sensitive grammars. Happy is used in GHC itself for Haskell’s grammar.

  1. Lexer.x
  2. Parser.y

Running the standalone commands will take Alex/Happy source files from stdin and generate and output Haskell modules. Alex and Happy files can contain arbitrary Haskell code that can be escaped to the output.

$ alex Lexer.x -o Lexer.hs
$ happy Parser.y -o Parser.hs

The generated modules are not human readable generally and unfortunately error messages are given in the Haskell source, not the Happy source. Anything enclosed in braces is interpreted as literal Haskell while the code outside the braces is interpeted as parser grammar.

{

-- This is Haskell 
module Parser where

}

-- This is Happy
%tokentype { Lexeme Token }
%error { parseError }

%monad { Parse }

{

-- This is Haskell again
parseExpr :: String -> Either String [Expr]
parseExpr input = 
  let tokenStream = scanTokens input in
  runExcept (expr tokenStream)
}

Happy and Alex can be integrated into a cabal file simply by including the Parser.y and Lexer.x files inside of the exposed modules and adding them to the build-tools pragma.

exposed-modules: Parser, Lexer
build-tools: alex , happy

Lexer

For instance we could define a little toy lexer with a custom set of tokens.

{
module Lexer (
  Token(..),
  scanTokens
) where

import Syntax
}

%wrapper "basic"

$digit = 0-9
$alpha = [a-zA-Z]
$eol   = [\n]

tokens :-

  -- Whitespace insensitive
  $eol                          ;
  $white+                       ;
  print                         { \s -> TokenPrint }
  $digit+                       { \s -> TokenNum (read s) }
  \=                            { \s -> TokenEq }
  $alpha [$alpha $digit \_ \']* { \s -> TokenSym s }

{

data Token 
  = TokenNum Int
  | TokenSym String
  | TokenPrint
  | TokenEq
  | TokenEOF
  deriving (Eq,Show)

scanTokens :: String -> [Token]
scanTokens = alexScanTokens

}

Parser

The associated parser is list of a production rules and a monad to run the parser in. Production rules consist of a set of options on the left and generating Haskell expressions on the right with indexed metavariables ($1, $2, …) mapping to the ordered terms on the left (i.e. in the second term term ~ $1, term ~ $2).

terms
    : term                   { [] }
    | term terms             {  :  }

An example parser module:

{
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

module Parser (
  parseExpr,
) where

import Lexer
import Syntax

import Control.Monad.Except
}

%name expr
%tokentype { Token }
%monad { Except String } { (>>=) } { return }
%error { parseError }

%token
    int   { TokenNum $$ }
    var   { TokenSym $$ }
    print { TokenPrint }
    '='   { TokenEq }

%%

terms 
  : term                   { [$1] }
  | term terms             { $1 : $2 }

term 
  : var                    { Var $1 }
  | var '=' int            { Assign $1 $3 }
  | print term             { Print $2 }

{

parseError :: [Token] -> Except String a
parseError (l:ls) = throwError (show l)
parseError [] = throwError "Unexpected end of Input"

parseExpr :: String -> Either String [Expr]
parseExpr input = 
  let tokenStream = scanTokens input in
  runExcept (expr tokenStream)
}

As a simple input consider the following simple program.

x = 4
print x
y = 5
print y
y = 6
print y

Streaming

Lazy IO

The problem with using the usual monadic approach to processing data accumulated through IO is that the Prelude tools require us to manifest large amounts of data in memory all at once before we can even begin computation.

mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b)
sequence :: (Monad m, Traversable t) => t (m a) -> m (t a)

Reading from the file creates a thunk for the string that forced will then read the file. The problem is then that this method ties the ordering of IO effects to evaluation order which is difficult to reason about in the large.

Consider that normally the monad laws ( in the absence of seq ) guarantee that these computations should be identical. But using lazy IO we can construct a degenerate case.

import System.IO

main :: IO ()
main = do
  withFile "foo.txt" ReadMode $ \fd -> do
    contents <- hGetContents fd
    print contents
  -- "foo\n"

  contents <- withFile "foo.txt" ReadMode hGetContents
  print contents
  -- ""

So what we need is a system to guarantee deterministic resource handling with constant memory usage. To that end both the Conduits and Pipes libraries solved this problem using different ( though largely equivalent ) approaches.

Pipes

await :: Monad m => Pipe a y m a
yield :: Monad m => a -> Pipe x a m ()

(>->) :: Monad m
      => Pipe a b m r
      -> Pipe b c m r
      -> Pipe a c m r

runEffect :: Monad m => Effect m r -> m r
toListM :: Monad m => Producer a m () -> m [a]

Pipes is a stream processing library with a strong emphasis on the static semantics of composition. The simplest usage is to connect “pipe” functions with a (>->) composition operator, where each component can await and yield to push and pull values along the stream.

import Pipes
import Pipes.Prelude as P
import Control.Monad
import Control.Monad.Identity

a :: Producer Int Identity ()
a = forM_ [1..10] yield

b :: Pipe Int Int Identity ()
b =  forever $ do
  x <- await
  yield (x*2)
  yield (x*3)
  yield (x*4)

c :: Pipe Int Int Identity ()
c = forever $ do
  x <- await
  if (x `mod` 2) == 0
    then yield x
    else return ()

result :: [Int]
result = P.toList $ a >-> b >-> c

For example we could construct a “FizzBuzz” pipe.

{-# LANGUAGE MultiWayIf #-}

import Pipes
import qualified Pipes.Prelude as P

count :: Producer Integer IO ()
count = each [1..100]

fizzbuzz :: Pipe Integer String IO ()
fizzbuzz = do
  n <- await
  if | n `mod` 15 == 0 -> yield "FizzBuzz"
     | n `mod` 5  == 0 -> yield "Fizz"
     | n `mod` 3  == 0 -> yield "Buzz"
     | otherwise       -> return ()
  fizzbuzz

main :: IO ()
main = runEffect $ count >-> fizzbuzz >-> P.stdoutLn

To continue with the degenerate case we constructed with Lazy IO, consider than we can now compose and sequence deterministic actions over files without having to worry about effect order.

import Pipes
import Pipes.Prelude as P
import System.IO

readF :: FilePath -> Producer String IO ()
readF file = do
    lift $ putStrLn $ "Opened" ++ file
    h <- lift $ openFile file ReadMode
    fromHandle h
    lift $ putStrLn $ "Closed" ++ file
    lift $ hClose h

main :: IO ()
main = runEffect $ readF "foo.txt" >-> P.take 3 >-> stdoutLn

This is a simple sampling of the functionality of pipes. The documentation for pipes is extensive and great deal of care has been taken make the library extremely thorough. pipes is a shining example of an accessible yet category theoretic driven design.

See: Pipes Tutorial

ZeroMQ

bracket :: MonadSafe m => Base m a -> (a -> Base m b) -> (a -> m c) -> m c

As a motivating example, ZeroMQ is a network messaging library that abstracts over traditional Unix sockets to a variety of network topologies. Most notably it isn’t designed to guarantee any sort of transactional guarantees for delivery or recovery in case of errors so it’s necessary to design a layer on top of it to provide the desired behavior at the application layer.

In Haskell we’d like to guarantee that if we’re polling on a socket we get messages delivered in a timely fashion or consider the resource in an error state and recover from it. Using pipes-safe we can manage the life cycle of lazy IO resources and can safely handle failures, resource termination and finalization gracefully. In other languages this kind of logic would be smeared across several places, or put in some global context and prone to introduce errors and subtle race conditions. Using pipes we instead get a nice tight abstraction designed exactly to fit this kind of use case.

For instance now we can bracket the ZeroMQ socket creation and finalization within the SafeT monad transformer which guarantees that after successful message delivery we execute the pipes function as expected, or on failure we halt the execution and finalize the socket.

import Pipes
import Pipes.Safe
import qualified Pipes.Prelude as P

import System.Timeout (timeout)
import Data.ByteString.Char8
import qualified System.ZMQ as ZMQ

data Opts = Opts
  { _addr    :: String  -- ^ ZMQ socket address
  , _timeout :: Int     -- ^ Time in milliseconds for socket timeout
  }

recvTimeout :: Opts -> ZMQ.Socket a -> Producer ByteString (SafeT IO) ()
recvTimeout opts sock = do
  body <- liftIO $ timeout (_timeout opts) (ZMQ.receive sock [])
  case body of
    Just msg -> do
      liftIO $ ZMQ.send sock msg []
      yield msg
      recvTimeout opts sock
    Nothing  -> liftIO $ print "socket timed out"

collect :: ZMQ.Context
        -> Opts
        -> Producer ByteString (SafeT IO) ()
collect ctx opts = bracket zinit zclose (recvTimeout opts)
  where
    -- Initialize the socket
    zinit = do
      liftIO $ print "waiting for messages"
      sock <- ZMQ.socket ctx ZMQ.Rep
      ZMQ.bind sock (_addr opts)
      return sock

    -- On timeout or completion guarantee the socket get closed.
    zclose sock = do
      liftIO $ print "finalizing"
      ZMQ.close sock

runZmq :: ZMQ.Context -> Opts -> IO ()
runZmq ctx opts = runSafeT $ runEffect $
  collect ctx opts >-> P.take 10 >-> P.print

main :: IO ()
main = do
  ctx <- ZMQ.init 1
  let opts = Opts {_addr = "tcp://127.0.0.1:8000", _timeout = 1000000 }
  runZmq ctx opts
  ZMQ.term ctx

Conduits

await :: Monad m => ConduitM i o m (Maybe i)
yield :: Monad m => o -> ConduitM i o m ()

runConduit :: Monad m => ConduitT () Void m r -> m r
(.|) :: Monad m
     => ConduitM a b m ()
     -> ConduitM b c m r
     -> ConduitM a c m r

Conduits are conceptually similar though philosophically different approach to the same problem of constant space deterministic resource handling for IO resources.

The first initial difference is that await function now returns a Maybe which allows different handling of termination.

Since 1.2.8 the separate connecting and fusing operators are deprecated in favor of a single fusing operator (.|).

{-# LANGUAGE MultiWayIf #-}

import Control.Monad.Trans
import Data.Conduit
import qualified Data.Conduit.List as CL

source :: ConduitT () Int IO ()
source = CL.sourceList [1 .. 100]

conduit :: ConduitT Int String IO ()
conduit = do
  val <- await
  case val of
    Nothing -> return ()
    Just n -> do
      if  | n `mod` 15 == 0 -> yield "FizzBuzz"
          | n `mod` 5 == 0 -> yield "Fizz"
          | n `mod` 3 == 0 -> yield "Buzz"
          | otherwise -> return ()
      conduit

sink :: ConduitT String o IO ()
sink = CL.mapM_ putStrLn

main :: IO ()
main = runConduit $ source .| conduit .| sink

Cryptography

Recently Haskell has seen quite a bit of development of cryptography libraries as it serves as an excellent language for working with and manipulating algebraic structures found in cryptographic primitives. In addition to most of the basic hashing, elliptic curve and cipher suites libraries, Haskell has a excellent standard cryptography library called cryptonite which provides the standard kitchen sink of most modern primitives. These include hash functions, elliptic curve cryptography, digital signature algorithms, ciphers, one time passwords, entropy generation and safe memory handling.

SHA Hashing

A cryptographic hash function is a special class of hash function that has certain properties which make it suitable for use in cryptography. It is a mathematical algorithm that maps data of arbitrary size to a bit string of a fixed size (a hash function) which is designed to also be a one-way function, that is, a function which is infeasible to invert.

SHA-256 is a cryptographic hash function from the SHA-2 family and is standardized by NIST. It produces a 256-bit message digest.

{-# LANGUAGE OverloadedStrings #-}

import Crypto.Hash (SHA256, Digest, hash)
import Data.ByteArray (convert)
import Data.ByteString.Char8 (ByteString)

v1 :: ByteString
v1 = "The quick brown fox jumps over the lazy dog"

h1 :: Digest SHA256
h1 = hash v1

s1 :: ByteString
s1  = convert h1

main :: IO ()
main = do
  print v1
  print h1
  print s1
{-# LANGUAGE OverloadedStrings #-}

import Crypto.Hash (Keccak_256, Digest, hash)
import Data.ByteArray (convert)
import Data.ByteString.Char8 (ByteString)

v1 :: ByteString
v1 = "The quick brown fox jumps over the lazy dog"

h1 :: Digest Keccak_256
h1 = hash v1

s1 :: ByteString
s1  = convert h1

main :: IO ()
main = do
  print v1
  print h1
  print s1

Password Hashing

Modern applications should use one of either the Blake2 or Argon2 hashing algorithms for storing passwords in a database as part of an authentication workflow.

To use Argon2:

{-# LANGUAGE OverloadedStrings #-}

module Argon where

import Crypto.Error
import Crypto.KDF.Argon2
import Crypto.Random (getRandomBytes)
import Data.ByteString

passHash :: IO ()
passHash = do
  salt <- getRandomBytes 16 :: IO ByteString
  out <- throwCryptoErrorIO (hash defaultOptions ("hunter2" :: ByteString) salt 256)
  print (out :: ByteString)

To use Blake2:

{-# LANGUAGE OverloadedStrings #-}

module Blake2 where

import Crypto.Hash
import Data.ByteString

passHash :: Digest Blake2b_256
passHash = hash ("hunter2" :: ByteString)

Curve25519 Diffie-Hellman

Curve25519 is a widely used Diffie-Hellman function suitable for a wide variety of applications. Private and public keys using Curve25519 are 32 bytes each. Elliptic curve Diffie-Hellman is a protocol in which two parties can exchange their public keys in the clear and generate a shared secret which can be used to share information across a secure channel.

A private key is a large integral value which is multiplied by the base point on the curve to generate the public key. Going to backwards from a public key requires one to solve the elliptic curve discrete logarithm which is believed to be computationally infeasible.

generateSecretKey :: MonadRandom m => m SecretKey
toPublic :: SecretKey -> PublicKey

Diffie-Hellman key exchange be performed by executing the function dh over the private and public keys for Alice and Bob.

dh :: PublicKey -> SecretKey -> DhSecret

An example is shown below:

import Crypto.Error
import qualified Crypto.PubKey.Curve25519 as Curve25519

-- Diffie-Hellman Key Exchange for Curve25519
dh :: IO ()
dh = do
  alicePriv <- Curve25519.generateSecretKey
  bobPriv <- Curve25519.generateSecretKey
  let secret1 = Curve25519.dh (Curve25519.toPublic alicePriv) bobPriv
  let secret2 = Curve25519.dh (Curve25519.toPublic bobPriv) alicePriv
  print (secret1 == secret2)

See:

Ed25519 EdDSA

EdDSA is a digital signature scheme based on Schnorr signature using the twisted Edwards curve Ed25519 and SHA-512 (SHA-2). It generates succinct (64 byte) signatures and has fast verification times.

{-# LANGUAGE OverloadedStrings #-}

module Ed25519 where

import Crypto.PubKey.Ed25519 as Ed25519
import Data.ByteString

msg :: ByteString
msg = "My example message"

example :: IO ()
example = do
  privKey <- Ed25519.generateSecretKey
  let pubKey = Ed25519.toPublic privKey
  let sig = sign privKey pubKey msg
  print sig
  print (Ed25519.verify pubKey msg sig)

See Also:

Secure Memory Handling

When using Haskell for cryptography work and even inside web services, some care must be taken to ensure that the primitives you are using don’t accidentally expose secrets or user data accidentally. This can occur in many ways through the mishandling of keys, timing attacks against interactive protocols, and the insecure wiping of memory.

When using Haskell integers be aware that arithmetic operations are not constant time and are simply backed by GMP integers. This may or may not be appropriate for your code if you expect arithmetic operations to be branch-free or have constant time addition or multiplication. If you need constant arithmetic you will likely have to drop down to C or Assembly and link the resulting code into your Haskell logic. Many Haskell cryptography libraries do just this.

With regards to timing attacks, take note of which functions are marked as vulnerable to timing attacks as most of these are marked in public API documentation.

When comparing hashes and unencrypted data for equality also make sure to use an equality test which is constant time. The default derived instance for Eq does not have this property. The securemem library provides a SecureMem datatype which can hold an arbitrary sized ByteString and can only be compared against other SecureMem ByteStrings by a constant time algorithm.

-- import Data.SecureMem
allocateSecureMem :: Int -> IO SecureMem
finalizeSecureMem :: SecureMem -> IO ()
toSecureMem :: ByteString -> SecureMem

This data structure will also automatically scrub its bytes with a runtime integrated finalizer on the pointer to the underlying memory. This ensures that as soon as the value is garbage collected, its underlying memory is wiped to zero values and does not linger on the process’s memory.

AES Encryption

AES (Advanced Encryption Standard) is a symmetric block cipher standardized by NIST. The cipher block size is fixed at 16 bytes and it is encrypted using a key of 128, 192 or 256 bits. AES is common cipher standard for symmetric encryption and used heavily in internet protocols.

An example of encrypting and decrypting data using the cryptonite library is shown below:

{-# LANGUAGE OverloadedStrings #-}

module AES where

import Crypto.Cipher.AES
import Crypto.Cipher.Types
import Crypto.Error
import Crypto.Random.Types
import Data.ByteString

type AesKey = ByteString

genKey :: IO AesKey
genKey = getRandomBytes 32 -- AES256 key size

aesEncrypt :: ByteString -> AesKey -> Either CryptoError ByteString
aesEncrypt input sk =
  ctrCombine
    <$> init
    <*> pure nullIV
    <*> pure input
  where
    init :: Either CryptoError AES256
    init = eitherCryptoError $ cipherInit sk

aesDecrypt :: ByteString -> AesKey -> Either CryptoError ByteString
aesDecrypt = aesEncrypt

main :: IO ()
main = do
  key <- genKey
  let message = "The quick brown fox jumped over the lazy dog."
      mcipherText = aesEncrypt message key
  case mcipherText of
    Right cipherText -> do
      print cipherText
      print (aesDecrypt cipherText key)
    Left err -> print err

Galois Fields

Many modern cryptographic protocols require the use of finite field arithmetic. Finite fields are algebraic structures that have algebraic field structure (addition, multiplication, division) and closure

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedLists #-}

module Galois where

import Data.Field.Galois
import Prelude hiding ((/))

-- Prime field
type Fq = Prime 2147483647

exampleFq :: IO ()
exampleFq = do
  print ((1 + 0x7FFFFFFF16) :: Fq)
  print ((10000 * 10000) :: Fq)
  print ((1 / 524287) :: Fq)

-- Polynomial term
data P2

-- Extension field
type Fq2 = Extension P2 Fq

-- Irreducublie monic polynomial extension
instance IrreducibleMonic P2 Fq where
  poly _ = X2 + 1

-- Polynomial 2*x^2 + 1 over Fq2
p1 :: Fq2
p1 = [1, 2]

p2 :: Fq2
p2 = (p1 + p1) * 2

p3 :: Bool
p3 = p2 / p1 == 4

See:

Elliptic Curves

Elliptic curves are a type of algebraic structure that are used heavily in cryptography. Most generally elliptic curves are families of curves to second order plane curves in two variables defined over finite fields. These elliptic curves admit a group construction over the curve points which has multiplication and addition. For finite fields with large order computing inversions is quite computationally difficult and gives rise to a trapdoor function which is easy to compute in one direction but difficult in reverse.

There are many types of plane curves with different coefficients that can be defined. The widely studied groups are one of the four classes. These are defined in the elliptic-curve library as lifted datatypes which are used at the type-level to distinguish curve operations.

On top of these curves there is an additional degree of freedom in the choice of coordinate system used. There are many ways to interpret the Cartesian plane in terms of coordinates and some of these coordinate systems admit more efficient operations for multiplication and addition of points.

For example the common Ed25519 curve can be defined as the following group structure defined as a series of type-level constructions:

type Fr = Prime 
  7237005577332262213973186563042994240857116359379907606001950938285454250989
type Fq = Prime 
  57896044618658097711785492504343953926634992332820282019728792003956564819949
type PA = Point Edwards Affine Ed25519 Fq Fr
type PP = Point Edwards Projective Ed25519 Fq Fr

Operations on this can be executed by several type classes functions.

module Example where

import Data.Curve.Edwards.Ed25519 as Ed25519
import Protolude

-- generate random affine point
p1 :: Ed25519.PA
p1 = Ed25519.gen

-- generate affine point by multiply by field coefficient
p2 :: Ed25519.PA
p2 = Ed25519.mul p1 (3 :: Ed25519.Fr)

-- point addition
p3 :: Ed25519.PA
p3 = Ed25519.add p1 p2

-- point identity
p4 :: Ed25519.PA
p4 = Ed25519.id

-- point doubling
p5 :: Ed25519.PA
p5 = Ed25519.dbl p1

-- point inversion
p6 :: Ed25519.PA
p6 = Ed25519.inv p1

-- Frobenius endomorphism
p7 :: Ed25519.PA
p7 = Ed25519.frob p1

-- base point
p8 :: Ed25519.PA
p8 = Ed25519.gA

-- convert affine coordinates to projective coordinates
p9 :: Ed25519.PP
p9 = Ed25519.fromA p8

-- get y coordinate (point from Fq) from coordinate
p10 :: Maybe Ed25519.Fq
p10 = Ed25519.yX p1 (2 :: Fq)

See: elliptic-curve

Pairing Cryptography

Cryptographic pairings are a novel technique that allows us to construct bilinear mappings of the form:

e : 𝔾1 × 𝔾2 → 𝔾T

These are bilinear over group addition and multiplication.

e(g1+g2,h) = e(g1,h)e(g2,h)

e(g,h1+h2) = e(g,h1)e(g,h2)

There are many types of pairings that can be computed. The pairing library implements the Ate pairing over several elliptic curve groups including the Barreto-Naehrig family and the BLS12-381 curve. These types of pairings are used quite frequently in modern cryptographic protocols such as the construction of zkSNARKs.

{-# LANGUAGE OverloadedLists #-}

module Main where

import Data.Curve.Weierstrass (Point (A), mul')
import Data.Group (pow)
import Data.Pairing.BN254 (BN254, G1, G2, pairing)

p :: G1 BN254
p =
  A
    1368015179489954701390400359078579693043519447331113978918064868415326638035
    9918110051302171585080402603319702774565515993150576347155970296011118125764

q :: G2 BN254
q =
  A
    [ 2725019753478801796453339367788033689375851816420509565303521482350756874229,
      7273165102799931111715871471550377909735733521218303035754523677688038059653
    ]
    [ 2512659008974376214222774206987427162027254181373325676825515531566330959255,
      957874124722006818841961785324909313781880061366718538693995380805373202866
    ]

main :: IO ()
main = do
  putStrLn "e(P, Q):"
  print (pairing p q)
  putStrLn "e(P, Q) is bilinear:"
  print $ pairing (mul' p a) (mul' q b) == pow (pairing p q) (a * b)
  where
    a = 2 :: Int
    b = 3 :: Int

See

zkSNARKs

zkSNARKS (zero knowledge succinct non-interactive arguments of knowledge) are a modern cryptographic construction that enable two parties called the Prover and Verifier to convince the verifier that a general computational statement is true without revealing anything else.

Haskell has a variety of libraries for building zkSNARK protocols including libraries to build circuit representations of embedded domain specific languages and produce succinct pairing based zero knowledge proofs.

Dates and Times

time

Haskell’s datetime library is unambiguously called time it exposes six core data structure which hold temporal quantities of various precisions.

There are several delta types that correspond to changes in time measured in various units of days or seconds.

module Time where

import Data.Maybe
import Data.Time

-- Example date:
-- April 5, 2063
day :: Day
day = fromJust $ fromGregorianValid year month day
  where
    year = 2063
    month = 4
    day = 5

-- Adding day deltas to dates
delta :: Day
delta = 3 `addDays` day

-- Adding month deltas to dates
deltaMo :: Day
deltaMo = 8 `addGregorianMonthsClip` day

-- Number of days between two dates
diff :: Integer
diff = delta `diffDays` day

-- Example time
time :: IO UTCTime
time = getCurrentTime

-- Add NominalDiffTime (i.e. picoseconds) to the time
-- Add 5 minutes.
-- Num instance converts from integral seconds to picoseconds
tdelta :: IO UTCTime
tdelta = do
  time <- getCurrentTime
  pure (300 `addUTCTime` time)

-- Get the current time zone
zone :: IO TimeZone
zone = getCurrentTimeZone

-- Get current time with timezone attached
zonetime :: IO ZonedTime
zonetime = getZonedTime

timer :: IO NominalDiffTime
timer = do
  start <- getCurrentTime
  end <- getCurrentTime
  pure (diffUTCTime end start)

ISO8601

The ISO standard for rendering and parsing datetimes can work with the default temporal datatypes. These work bidirectionally for both parsing and pretty printing. Simple use case is shown below:

module Time where

import Data.Maybe
import Data.Time
import Data.Time.Format.ISO8601

-- April 5, 2063
day :: Day
day = fromJust (fromGregorianValid year month day)
  where
    year = 2063
    month = 4
    day = 5

printing :: IO ()
printing = do
  t <- getCurrentTime
  zt <- getZonedTime
  print (iso8601Show day)
  print (iso8601Show t)
  print (iso8601Show zt)

parsing :: IO ()
parsing = do
  d <- iso8601ParseM "2063-04-05" :: IO Day
  t <- iso8601ParseM "2020-01-29T15:03:43.013033515Z" :: IO UTCTime
  zt <- iso8601ParseM "2020-01-29T15:03:43.013040029+00:00" :: IO ZonedTime
  print d
  print t
  print zt

Data Formats

JSON

Aeson is a library for efficient parsing and generating JSON. It is the canonical JSON library for handling JSON.

decode :: FromJSON a => ByteString -> Maybe a
encode :: ToJSON a => a -> ByteString
eitherDecode :: FromJSON a => ByteString -> Either String a

fromJSON :: FromJSON a => Value -> Result a
toJSON :: ToJSON a => a -> Value

A point of some subtlety to beginners is that the return types for Aeson functions are polymorphic in their return types meaning that the resulting type of decode is specified only in the context of your programs use of the decode function. So if you use decode in a point your program and bind it to a value x and then use x as if it were an integer throughout the rest of your program, Aeson will select the typeclass instance which parses the given input string into a Haskell integer.

Value

Aeson uses several high performance data structures (Vector, Text, HashMap) by default instead of the naive versions so typically using Aeson will require that we import them and use OverloadedStrings when indexing into objects.

The underlying Aeson structure is called Value and encodes a recursive tree structure that models the semantics of untyped JSON objects by mapping them onto a large sum type which embodies all possible JSON values.

type Object = HashMap Text Value

type Array = Vector Value

-- | A JSON value represented as a Haskell value.
data Value
  = Object !Object
  | Array !Array
  | String !Text
  | Number !Scientific
  | Bool !Bool
  | Null

For instance the Value expansion of the following JSON blob:

{
  "a": [1,2,3],
  "b": 1
}

Is represented in Aeson as the Value:

Object
   (fromList
      [ ( "a"
        , Array (fromList [ Number 1.0 , Number 2.0 , Number 3.0 ])
        )
      , ( "b" , Number 1.0 )
      ])

Let’s consider some larger examples, we’ll work with this contrived example JSON:

{
    "id": 1,
    "name": "A green door",
    "price": 12.50,
    "tags": ["home", "green"],
    "refs": {
      "a": "red",
      "b": "blue"
    }
}

Unstructured or Dynamic JSON

In dynamic scripting languages it’s common to parse amorphous blobs of JSON without any a priori structure and then handle validation problems by throwing exceptions while traversing it. We can do the same using Aeson and the Maybe monad.

{-# LANGUAGE OverloadedStrings #-}

import Data.Text
import Data.Aeson
import Data.Vector
import qualified Data.HashMap.Strict as M
import qualified Data.ByteString.Lazy as BL

-- Pull a key out of an JSON object.
(^?) :: Value -> Text -> Maybe Value
(^?) (Object obj) k = M.lookup k obj
(^?) _ _ = Nothing

-- Pull the ith value out of a JSON list.
ix :: Value -> Int -> Maybe Value
ix (Array arr) i = arr !? i
ix _ _ = Nothing

readJSON str = do
  obj <- decode str
  price <- obj ^? "price"
  refs  <- obj ^? "refs"
  tags  <- obj ^? "tags"
  aref  <- refs ^? "a"
  tag1  <- tags `ix` 0
  return (price, aref, tag1)

main :: IO ()
main = do
  contents <- BL.readFile "example.json"
  print $ readJSON contents

Structured JSON

This isn’t ideal since we’ve just smeared all the validation logic across our traversal logic instead of separating concerns and handling validation in separate logic. We’d like to describe the structure before-hand and the invalid case separately. Using Generic also allows Haskell to automatically write the serializer and deserializer between our datatype and the JSON string based on the names of record field names.

{-# LANGUAGE DeriveGeneric #-}

import Data.Text
import Data.Aeson
import GHC.Generics
import qualified Data.ByteString.Lazy as BL

import Control.Applicative

data Refs = Refs
  { a :: Text
  , b :: Text
  } deriving (Show,Generic)

data Data = Data
  { id    :: Int
  , name  :: Text
  , price :: Float
  , tags  :: [Text]
  , refs  :: Refs
  } deriving (Show,Generic)

instance FromJSON Data
instance FromJSON Refs
instance ToJSON Data
instance ToJSON Refs

main :: IO ()
main = do
  contents <- BL.readFile "example.json"
  let Just dat = decode contents
  print $ name dat
  print $ a (refs dat)

Now we get our validated JSON wrapped up into a nicely typed Haskell ADT.

Data
  { id = 1
  , name = "A green door"
  , price = 12
  , tags = [ "home" , "green" ]
  , refs = Refs { a = "red" , b = "blue" }
  }

The functions fromJSON and toJSON can be used to convert between this sum type and regular Haskell types with.

data Result a = Error String | Success a
λ: fromJSON (Bool True) :: Result Bool
Success True

λ: fromJSON (Bool True) :: Result Double
Error "when expecting a Double, encountered Boolean instead"

As of 7.10.2 we can use the new -XDeriveAnyClass to automatically derive instances of FromJSON and ToJSON without the need for standalone instance declarations. These are implemented entirely in terms of the default methods which use Generics under the hood.

{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}

import Data.Aeson
import Data.ByteString.Lazy.Char8 as BL
import Data.Text
import GHC.Generics

data Refs
  = Refs
      { a :: Text,
        b :: Text
      }
  deriving (Show, Generic, FromJSON, ToJSON)

data Data
  = Data
      { id :: Int,
        name :: Text,
        price :: Int,
        tags :: [Text],
        refs :: Refs
      }
  deriving (Show, Generic, FromJSON, ToJSON)

main :: IO ()
main = do
  contents <- BL.readFile "example.json"
  let Just dat = decode contents
  print $ name dat
  print $ a (refs dat)
  BL.putStrLn $ encode dat

Hand Written Instances

While it’s useful to use generics to derive instances, sometimes you actually want more fine grained control over serialization and de serialization. So we fall back on writing ToJSON and FromJSON instances manually. Using FromJSON we can project into hashmap using the (.:) operator to extract keys. If the key fails to exist the parser will abort with a key failure message. The ToJSON instances can never fail and simply require us to pattern match on our custom datatype and generate an appropriate value.

The law that the FromJSON and ToJSON classes should maintain is that encode . decode and decode . encode should map to the same object. Although in practice there many times when we break this rule and especially if the serialize or de serialize is one way.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.Text
import Data.Aeson
import Data.Maybe
import Data.Aeson.Types
import Control.Applicative
import qualified Data.ByteString.Lazy as BL

data Crew = Crew
  { name  :: Text
  , rank  :: Rank
  } deriving (Show)

data Rank
  = Captain
  | Ensign
  | Lieutenant
  deriving (Show)

-- Custom JSON Deserializer

instance FromJSON Crew where
  parseJSON (Object o) = do
    _name <- o .: "name"
    _rank <- o .: "rank"
    pure (Crew _name _rank)

instance FromJSON Rank where
  parseJSON (String s) = case s of
    "Captain"    -> pure Captain
    "Ensign"     -> pure Ensign
    "Lieutenant" -> pure Lieutenant
    _            -> typeMismatch "Could not parse Rank" (String s)
  parseJSON x = typeMismatch "Expected String" x

-- Custom JSON Serializer

instance ToJSON Crew where
  toJSON (Crew name rank) = object [
      "name" .= name
    , "rank" .= rank
    ]

instance ToJSON Rank where
  toJSON Captain    = String "Captain"
  toJSON Ensign     = String "Ensign"
  toJSON Lieutenant = String "Lieutenant"


roundTrips :: Crew -> Bool
roundTrips = isJust . go
  where
    go :: Crew -> Maybe Crew
    go = decode . encode


picard :: Crew
picard = Crew { name = "Jean-Luc Picard", rank = Captain }

main :: IO ()
main = do
  contents <- BL.readFile "crew.json"
  let (res :: Maybe Crew) = decode contents
  print res
  print $ roundTrips picard

See: Aeson Documentation

Yaml

Yaml is a textual serialization format similar to JSON. It uses an indentation sensitive structure to encode nested maps of keys and values. The Yaml interface for Haskell is a precise copy of Data.Aeson

YAML Input:

invoice: 34843
date   : 2001-01-23
bill: 
    given  : Chris
    family : Dumars
    address:
        lines: |
            458 Walkman Dr.
            Suite #292
        city    : Royal Oak
        state   : MI
        postal  : 48046

YAML Output:

Object
  (fromList
     [ ( "invoice" , Number 34843.0 )
     , ( "date" , String "2001-01-23" )
     , ( "bill-to"
       , Object
           (fromList
              [ ( "address"
                , Object
                    (fromList
                       [ ( "state" , String "MI" )
                       , ( "lines" , String "458 Walkman Dr.\nSuite #292\n" )
                       , ( "city" , String "Royal Oak" )
                       , ( "postal" , Number 48046.0 )
                       ])
                )
              , ( "family" , String "Dumars" )
              , ( "given" , String "Chris" )
              ])
       )
     ])

To parse this file we use the following datatypes and functions:

{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE ScopedTypeVariables #-}

import qualified Data.ByteString as BL
import Data.Text (Text)
import Data.Yaml
import GHC.Generics

data Invoice
  = Invoice
      { invoice :: Int,
        date :: Text,
        bill :: Billing
      }
  deriving (Show, Generic, FromJSON)

data Billing
  = Billing
      { address :: Address,
        family :: Text,
        given :: Text
      }
  deriving (Show, Generic, FromJSON)

data Address
  = Address
      { lines :: Text,
        city :: Text,
        state :: Text,
        postal :: Int
      }
  deriving (Show, Generic, FromJSON)

main :: IO ()
main = do
  contents <- BL.readFile "example.yaml"
  let (res :: Either ParseException Invoice) = decodeEither' contents
  case res of
    Left err -> print err
    Right val -> print val

Which generates:

Invoice
  { invoice = 34843
  , date = "2001-01-23"
  , bill =
      Billing
        { address =
            Address
              { lines = "458 Walkman Dr.\nSuite #292\n"
              , city = "Royal Oak"
              , state = "MI"
              , postal = 48046
              }
        , family = "Dumars"
        , given = "Chris"
        }
  }

CSV

Cassava is an efficient CSV parser library. We’ll work with this tiny snippet from the iris dataset:

sepal_length,sepal_width,petal_length,petal_width,plant_class
5.1,3.5,1.4,0.2,Iris-setosa
5.0,2.0,3.5,1.0,Iris-versicolor
6.3,3.3,6.0,2.5,Iris-virginica

Unstructured CSV

Just like with Aeson if we really want to work with unstructured data the library accommodates this.

import Data.Csv

import Text.Show.Pretty

import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

type ErrorMsg = String
type CsvData = V.Vector (V.Vector BL.ByteString)

example :: FilePath -> IO (Either ErrorMsg CsvData)
example fname = do
  contents <- BL.readFile fname
  return $ decode NoHeader contents

We see we get the nested set of stringy vectors:

[ [ "sepal_length"
  , "sepal_width"
  , "petal_length"
  , "petal_width"
  , "plant_class"
  ]
, [ "5.1" , "3.5" , "1.4" , "0.2" , "Iris-setosa" ]
, [ "5.0" , "2.0" , "3.5" , "1.0" , "Iris-versicolor" ]
, [ "6.3" , "3.3" , "6.0" , "2.5" , "Iris-virginica" ]
]

Structured CSV

Just like with Aeson we can use Generic to automatically write the deserializer between our CSV data and our custom datatype.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveGeneric #-}

import Data.Csv
import GHC.Generics
import qualified Data.Vector as V
import qualified Data.ByteString.Lazy as BL

data Plant = Plant
  { sepal_length :: Double
  , sepal_width  :: Double
  , petal_length :: Double
  , petal_width  :: Double
  , plant_class :: String
  } deriving (Generic, Show)

instance FromNamedRecord Plant
instance ToNamedRecord Plant

type ErrorMsg = String
type CsvData = (Header, V.Vector Plant)

parseCSV :: FilePath -> IO (Either ErrorMsg CsvData)
parseCSV fname = do
  contents <- BL.readFile fname
  return $ decodeByName contents

main = parseCSV "iris.csv" >>= print

And again we get a nice typed ADT as a result.

[ Plant
    { sepal_length = 5.1
    , sepal_width = 3.5
    , petal_length = 1.4
    , petal_width = 0.2
    , plant_class = "Iris-setosa"
    }
, Plant
    { sepal_length = 5.0
    , sepal_width = 2.0
    , petal_length = 3.5
    , petal_width = 1.0
    , plant_class = "Iris-versicolor"
    }
, Plant
    { sepal_length = 6.3
    , sepal_width = 3.3
    , petal_length = 6.0
    , petal_width = 2.5
    , plant_class = "Iris-virginica"
    }
]

Network & Web Programming

There is a common meme that it is impossible to build web CRUD applications in Haskell. This absolutely false and the ecosystem provides a wide variety of tools and frameworks for building modern web services. That said, although Haskell has web frameworks the userbase of these libraries is several orders of magnitude less than common tools like PHP and Wordpress and as such are not close to the level of polish, documentation, or userbase. Put simply you won’t be able to drunkenly muddle your way through building a Haskell web application by copying and pasting code from Stackoverflow.

Building web applications in Haskell is always a balance between the power and flexibility of the type-driven way of building software versus the network effects of ecosystems based on dynamically typed languages with lower barriers to entry.

Web packages can mostly be broken down into several categories:

Frameworks

There are three large Haskell web frameworks:

IHP

IHP, by digitallyInduced, is a new batteries-included web framework optimized for longterm productivity and programmer happiness. The framework manages installation of ide, db, and haskell for you, as result of trying to be as beginner friendly as possible with all batteries included, while while having a bunch of novel features. The framework has its own documentation.

Servant

Servant is the newest of the standard Haskell web frameworks. It emerged after GHC 8.0 and incorporates many modern language extensions. It is based around the key idea of having a type-safe routing system in which many aspects of the request/response cycle of the server are expressed at the type-level. This allows many common errors found in web applications to be prevented. Servant also has very advanced documentation generation capability and can automatically generate API endpoint documentation from the type signatures of an application. Servant has a reputation for being a bit more challenging to learn but is quite powerful and has an wide user-base in the industrial Haskell community.

See: Servant

Scotty

Scotty is a minimal web framework that builds on top of the Warp web server. It is based on a simple routing model and that makes standing up simple REST API services quite simple. Its design is modeled after the Flask and Sinatra models found in Python and Ruby.

See: Scotty

Yesod

Yesod is a large featureful ecosystem built on lots of metaprogramming using Template Haskell. There is excellent documentation and a book on building real world applications. This style of metaprogramming appeals to some types of programmers who can work with the code generation style.

Snap

Snap is a small Haskell web framework which was developed heavily in the early 2000s. It is based on a very well-tested core and has a modular framework in which “snaplets” can extend the base server. Much of the Haskell.org infrastructure of packages and development runs on top of Snap web applications.

HTTP Requests

Haskell has a variety of HTTP request and processing libraries. The simplest and most flexible is the HTTP library.

{-# LANGUAGE OverloadedStrings #-}

import Control.Applicative
import Control.Concurrent.Async
import Network.HTTP.Client
import Network.HTTP.Types

type URL = String

get :: Manager -> URL -> IO Int
get m url = do
  req <- parseUrlThrow url
  statusCode . responseStatus <$> httpNoBody req m

single :: IO Int
single = do
  manager <- newManager defaultManagerSettings
  get manager "http://haskell.org"

parallel :: IO [Int]
parallel = do
  manager <- newManager defaultManagerSettings
  -- Fetch w3.org 10 times concurrently
  let urls = replicate 10 "http://www.w3.org"
  mapConcurrently (get manager) urls

main :: IO ()
main = do
  print =<< single
  print =<< parallel

Req

Req is a modern HTTP request library that provides a simple monad for executing batches of HTTP requests to servers. It integrates closely with the Aeson library for JSON handling and exposes a type safe API to prevent the mixing of invalid requests and payload types.

The two toplevel functions of note are req and runReq which run inside of a Req monad which holds the socket state.

runReq :: MonadIO m => HttpConfig -> Req a -> m a
req
  :: ( MonadHttp    m
     , HttpMethod   method
     , HttpBody     body
     , HttpResponse response
     , HttpBodyAllowed (AllowsBody method) (ProvidesBody body) )
  => method            -- ^ HTTP method
  -> Url scheme        -- ^ 'Url'—location of resource
  -> body              -- ^ Body of the request
  -> Proxy response    -- ^ A hint how to interpret response
  -> Option scheme     -- ^ Collection of optional parameters
  -> m response        -- ^ Response

A end to end example can include serialising and de serialising requests to and from JSON from RESTful services.

{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}

import Control.Monad.Trans
import Data.Aeson
import GHC.Generics
import Network.HTTP.Req

data Point = Point {x :: Int, y :: Int}
  deriving (Generic, ToJSON, FromJSON)

example :: IO ()
example = runReq defaultHttpConfig $ do
  -- GET request http response
  r <- req GET (https "w3.org") NoReqBody bsResponse mempty
  liftIO $ print (responseBody r)
  -- GET request json response
  r <- req GET (https "api.github.com" /: "users" /: "sdiehl") NoReqBody jsonResponse mempty
  liftIO $ print (responseBody r :: Value)
  -- POST request json payload
  r <- req POST (https "example.com") (ReqBodyJson (Point 1 2)) jsonResponse mempty
  liftIO $ print (responseBody r :: Value)

Blaze

Blaze is an HTML combinator library that provides that capacity to build composable bits of HTML programmatically. It doesn’t string templating libraries like Hastache but instead provides an API for building up HTML documents from logic where the format out of the output is generated procedurally.

For sequencing HTML elements the elements can either be sequenced in a monad or with monoid operations.

{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import Text.Blaze.Html.Renderer.Text

import qualified Data.Text.Lazy.IO as T

example :: Html
example = do
  h1 "First header"
  p $ ul $ mconcat [li "First", li "Second"]

main :: IO ()
main = do
  T.putStrLn $ renderHtml example

For custom datatypes we can implement the ToMarkupclass to convert between Haskell data structures and HTML representation.

{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE OverloadedStrings #-}

module Html where

import Text.Blaze.Html5
import Text.Blaze.Html.Renderer.Text

import qualified Data.Text.Lazy as T
import qualified Data.Text.Lazy.IO as T

data Employee = Employee
  { name :: T.Text
  , age :: Int
  }

instance ToMarkup Employee where
  toMarkup Employee {..} = ul $ mconcat
    [ li (toHtml name)
    , li (toHtml age)
    ]

fred :: Employee
fred = Employee { name = "Fred", age = 35 }

main :: IO ()
main = do
  T.putStrLn $ renderHtml (toHtml fred)

Lucid

Lucid is another HTML generation library. It takes a different namespacing approach than Blaze and doesn’t use names which clash with the default Prelude exports. So elements like div, id, and head are replaced with underscore suffixed functions. div_, id_ and head_.

The base interface is defined through a ToHTML typeclass which renders an element into a text builder interface wrapped in HtmlT transformer.

class ToHtml a where
  toHtml :: Monad m => a -> HtmlT m ()
  toHtmlRaw :: Monad m => a -> HtmlT m ()

execHtmlT :: Monad m => HtmlT m a -> m Builder
renderText :: Html a -> Text
renderBS :: Html a -> ByteString

New elements and attributes can be created by the smart constructors for Attribute and Element types.

makeAttribute
  :: Text -- ^ Attribute name.
  -> Text -- ^ Attribute value.
  -> Attribute

makeElement
  :: Functor m
  => Text       -- ^ Name.
  -> HtmlT m a  -- ^ Children HTML.
  -> HtmlT m a -- ^ A parent element.

A simple example of usage is shown below:

{-# LANGUAGE BlockArguments #-}
{-# LANGUAGE OverloadedStrings #-}

module Main where

import Lucid
import Lucid.Base
import Lucid.Html5

example1 :: Html ()
example1 = table_ (tr_ (td_ (p_ "My table.")))

example2 :: Html ()
example2 = html_ do
  head_ do
    title_ "HTML from Haskell"
    link_ [rel_ "stylesheet", type_ "text/css", href_ "bootstrap.css"]
  body_ do
    p_ "Generating HTMl form Haskell datatypes:"
    ul_ $ mapM_ (li_ . toHtml . show) [1 .. 100]

main :: IO ()
main = do
  print (renderText example1)
  print (renderBS example2)

Hastache

Hastache is string templating based on the “Mustache” style of encoding metavariables with double braces {{ x }}. Hastache supports automatically converting many Haskell types into strings and uses the efficient Text functions for formatting.

The variables loaded into the template are specified in either a function mapping variable names to printable MuType values. For instance using a function.

{-# LANGUAGE OverloadedStrings #-}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text as T
import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL

import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Function strContext
context :: String -> MuType IO
context "body"  = MuVariable ("Hello World" :: TL.Text)
context "title" = MuVariable ("Haskell is lovely" :: TL.Text)
context _       = MuVariable ()

main :: IO ()
main = do
  output <- template "templates/home.html" (mkStrContext context)
  TL.putStrLn output

Or using Data-Typeable record and mkGenericContext, the Haskell field names are converted into variable names.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Text.Hastache
import Text.Hastache.Context

import qualified Data.Text.Lazy as TL
import qualified Data.Text.Lazy.IO as TL

import Data.Data

template :: FilePath -> MuContext IO -> IO TL.Text
template = hastacheFile defaultConfig

-- Record context
data TemplateCtx = TemplateCtx
  { body :: TL.Text
  , title :: TL.Text
  } deriving (Data, Typeable)

main :: IO ()
main = do
  let ctx = TemplateCtx { body = "Hello", title = "Haskell" }
  output <- template "templates/home.html" (mkGenericContext ctx)
  TL.putStrLn output

The MuType and MuContext types can be parameterized by any monad or transformer that implements MonadIO, not just IO.

Warp

Warp is a efficient massively concurrent web server, it is the backend server behind several of popular Haskell web frameworks. The internals have been finely tuned to utilize Haskell’s concurrent runtime and is capable of handling a great deal of concurrent requests. For example we can construct a simple web service which simply returns a 200 status code with a ByteString which is flushed to the socket.

{-# LANGUAGE OverloadedStrings #-}

import Network.HTTP.Types
import Network.Wai
import Network.Wai.Handler.Warp (run)

app :: Application
app req respond = respond $ responseLBS status200 [] "Make it so."

main :: IO ()
main = run 8000 app

See: Warp

Scotty

Continuing with our trek through web libraries, Scotty is a web microframework similar in principle to Flask in Python or Sinatra in Ruby.

{-# LANGUAGE OverloadedStrings #-}

import Web.Scotty

import qualified Text.Blaze.Html5 as H
import Text.Blaze.Html5 (toHtml, Html)
import Text.Blaze.Html.Renderer.Text (renderHtml)

greet :: String -> Html
greet user = H.html $ do
  H.head $
    H.title "Welcome!"
  H.body $ do
    H.h1 "Greetings!"
    H.p ("Hello " >> toHtml user >> "!")

app = do
  get "/" $
    text "Home Page"

  get "/greet/:name" $ do
    name <- param "name"
    html $ renderHtml (greet name)

main :: IO ()
main = scotty 8000 app

Of importance to note is the Blaze library used here overloads do-notation but is not itself a proper monad so the various laws and invariants that normally apply for monads may break down or fail with error terms.

A collection of useful related resources can be found on the Scotty wiki: Scotty Tutorials & Examples

Servant

Servant is a modern Haskell web framework heavily based on type-level programming patterns. Servant’s novel invention is a type-safe way of specifying URL routes. This consists of two type-level infix combinators :> and :<|> combinators which combine URL fragments into routes that are run by the web server. The two datatypes are defined as followings:

data (path :: k) :> (a :: *) 
data a :<|> b 

For example the URL endpoint for a GET route that returns JSON.

Endpoint Servant route
GET /api/hello "api" :> "hello" :> Get ‘[JSON] String

The HTTP methods are lifted to the type level as DataKinds from the following definition.

data StdMethod = GET | POST | HEAD | PUT | DELETE | TRACE | CONNECT | OPTIONS | PATCH

And the common type synonyms are given for successful requests:

type Post = Verb POST 200
type Get  = Verb GET 200

For requests that receive a payload from the client a ReqBody is attached to the route which contains the content type of the requested payload. This takes a type-level list of options and the Haskell value type to serialize into.

data ReqBody' (mods :: [*]) (contentTypes :: [*]) (a :: *)
Endpoint Servant route
POST /api/hello "api" :> "hello" :> ReqBody '[JSON] MyData :> Post '[JSON] MyData

The application itself is expressed simply as a function which takes a Request containing the headers and payload and handles it by evaluating to a Response inside of the IO. The underlying server used in servant-server is Warp.

type Application 
  = Request 
  -> (Response -> IO ResponseReceived)
  -> IO ResponseReceived

Middleware is then simply a higher order function which takes an Application to another Application.

type Middleware = Application -> Application

Handlers are specified defined in servant-server and are IO computations with failures handed by ServerError. The toplevel functions run and serve can be used to instantiate the application inside of a server.

newtype Handler a = Handler { runHandler' :: ExceptT ServerError IO a }
serve :: HasServer api '[] => Proxy api -> Server api -> Application
run :: Port -> Application -> IO ()

For error handling the throwError function can be used attached to an error response code.

fail404 :: Handler ()
fail404 = throwError $ err404 { errBody = "Not found" }

Minimal Example

The simplest end to end example is simply a router which has a single endpoint mapping to a server handler which returns the String “Hello World” as a application/json content type.

type AppAPI = "api" :> "hello" :> Get ‘[JSON] String

appAPI :: Proxy AppAPI
appAPI = Proxy :: Proxy AppAPI

helloHandler :: Handler String
helloHandler = return "Hello World!"

apiHandler :: Server AppAPI
apiHandler = helloHandler

runServer :: IO ()
runServer = do
  let port = 8000
  run port (serve appAPI apiHandler)

Full Example

As a second case, we consider a larger application which builds a user interface which will enable the interface to send and receive data from the client to the REST API.

First we define a custom User datatype and using generic deriving we can derive the serializer from URI form data automatically.

data User = User {name :: Text, userId :: Int}
  deriving stock (Generic, Show)
  deriving anyclass (FromForm, FromHttpApiData)

The URL routes are specified in an API type which maps the REST verbs to response handlers.

type API =
  Get '[HTML] Markup
  :<|> ( "user" :> ReqBody '[FormUrlEncoded] User :> Post '[HTML] Markup )

The handler is an inhabitant of the APItype and defines the value level handlers corresponding to the routes at the type-level :<|> terms.

server :: Handler Markup :<|> (User -> Handler Markup)
server = index :<|> createUser

The page rendering itself is mostly blaze boilerplate that generates the markup programmatically using combinators. One could just as easily plug in any of the templating languages (Mustache, …) instead here.

index :: Handler Markup
index = do
  pure (page userForm)

userForm :: Html.Html
userForm =
  Html.div ! Attr.class_ "row" $ do
    form "/user" "post" $ do
      field "name"
      field "userId"
      submit "Create user"

The page will include the html and header containing the source files. In this case we’ll simply load the Bootstrap library from a CDN.

page :: Markup -> Markup
page body = do
  Html.html do
    Html.head do
      Html.title "Example App"
      Html.link
        ! Attr.rel "stylesheet"
        ! Attr.href "https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css"
    Html.body do
      ... other body markup ...

And then the handler for POST for the single endpoint will simply deserialize the User datatype form the POST data and render it into a page with the fields extracted.

createUser :: User -> Handler Markup
createUser user@User {..} = do
  liftIO (print user)
  pure $ page $ do
    Html.p ("Id: " <> toHtml userId)
    Html.p ("Username: " <> toHtml name)

Putting it all together we can invoke run on a given port and serve the application. Point your browser at localhost:8000 to see it run.

main :: IO ()
main = do
  putStrLn "Running Server"
  let application = Server.serve @API Proxy server
  Warp.run 8000 application

From here you could all manner of additional logic, like adding in the Selda object relational mapper, adding in servant-auth for authentication or using swagger2 for building Open API specifications.


Databases

Haskell has bindings for most major databases and persistence engines. Generally the libraries will consist of two different layers. The raw bindings which wrap the C library or wire protocol will usually be called -simple. So for example postgresql-simple is the Haskell library for interfacing with the C library libpq-dev. Higher level libraries will depend on this library for the bindings and provide higher level interfaces for building queries, managing transactions, and connection pooling.

Postgres

Postgres is an object-relational database management system with a rich extension of the SQL standard. Consider the following tables specified in DDL.

CREATE TABLE "books" (
        "id" integer NOT NULL,
        "title" text NOT NULL,
        "author_id" integer,
        "subject_id" integer,
        Constraint "books_id_pkey" Primary Key ("id")
);

CREATE TABLE "authors" (
        "id" integer NOT NULL,
        "last_name" text,
        "first_name" text,
        Constraint "authors_pkey" Primary Key ("id")
);

The postgresql-simple bindings provide a thin wrapper to various libpq commands to interact with a Postgres server. These functions all take a Connection object to the database instance and allow various bytestring queries to be sent and result sets mapped into Haskell datatypes. There are four primary functions for these interactions:

query_ :: FromRow r => Connection -> Query -> IO [r]
query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]
execute :: ToRow q => Connection -> Query -> q -> IO Int64
execute_ :: Connection -> Query -> IO Int64

The result of the query function is a list of elements which implement the FromRow typeclass. This can be many things including a single element (Only), a list of tuples where each element implements FromField or a custom datatype that itself implements FromRow. Under the hood the database bindings inspects the Postgres oid objects and then attempts to convert them into the Haskell datatype of the field being scrutinised. This can fail at runtime if the types in the database don’t align with the expected types in the logic executing the SQL query.

Tuples

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import qualified Data.Text as T
import qualified Database.PostgreSQL.Simple as SQL

creds :: SQL.ConnectInfo
creds =
  SQL.defaultConnectInfo
    { SQL.connectUser = "example",
      SQL.connectPassword = "example",
      SQL.connectDatabase = "booktown"
    }

selectBooks :: SQL.Connection -> IO [(Int, T.Text, Int)]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books"

main :: IO ()
main = do
  conn <- SQL.connect creds
  books <- selectBooks conn
  print books

This yields the result set:

[ ( 7808 , "The Shining" , 4156 )
, ( 4513 , "Dune" , 1866 )
, ( 4267 , "2001: A Space Odyssey" , 2001 )
, ( 1608 , "The Cat in the Hat" , 1809 )
, ( 1590 , "Bartholomew and the Oobleck" , 1809 )
, ( 25908 , "Franklin in the Dark" , 15990 )
, ( 1501 , "Goodnight Moon" , 2031 )
, ( 190 , "Little Women" , 16 )
, ( 1234 , "The Velveteen Rabbit" , 25041 )
, ( 2038 , "Dynamic Anatomy" , 1644 )
, ( 156 , "The Tell-Tale Heart" , 115 )
, ( 41473 , "Programming Python" , 7805 )
, ( 41477 , "Learning Python" , 7805 )
, ( 41478 , "Perl Cookbook" , 7806 )
, ( 41472 , "Practical PostgreSQL" , 1212 )
]

Custom Types

{-# LANGUAGE OverloadedStrings #-}

import qualified Data.Text as T

import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
  { id_ :: Int
  , title :: T.Text
  , author_id :: Int
  } deriving (Show)

instance FromRow Book where
  fromRow = Book <$> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
  { SQL.connectUser = "example"
  , SQL.connectPassword = "example"
  , SQL.connectDatabase = "booktown"
  }

selectBooks :: SQL.Connection -> IO [Book]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books limit 4"

main :: IO ()
main = do
  conn <- SQL.connect creds
  books <- selectBooks conn
  print books

This yields the result set:

[ Book { id_ = 7808 , title = "The Shining" , author_id = 4156 }
, Book { id_ = 4513 , title = "Dune" , author_id = 1866 }
, Book { id_ = 4267 , title = "2001: A Space Odyssey" , author_id = 2001 }
, Book { id_ = 1608 , title = "The Cat in the Hat" , author_id = 1809 }
]

Quasiquoter

As SQL expressions grow in complexity they often span multiple lines and sometimes it’s useful to just drop down to a quasiquoter to embed the whole query. The quoter here is pure, and just generates the Query object behind as a ByteString.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import qualified Data.Text as T

import qualified Database.PostgreSQL.Simple as SQL
import Database.PostgreSQL.Simple.SqlQQ (sql)
import Database.PostgreSQL.Simple.FromRow (FromRow(..), field)

data Book = Book
  { id_ :: Int
  , title :: T.Text
  , first_name :: T.Text
  , last_name :: T.Text
  } deriving (Show)

instance FromRow Book where
  fromRow = Book <$> field <*> field <*> field <*> field

creds :: SQL.ConnectInfo
creds = SQL.defaultConnectInfo
  { SQL.connectUser = "example"
  , SQL.connectPassword = "example"
  , SQL.connectDatabase = "booktown"
  }

selectBooks :: SQL.Query
selectBooks = [sql|
select
  books.id,
  books.title,
  authors.first_name,
  authors.last_name
from books
join authors on
  authors.id = books.author_id
limit 5
|]

main :: IO ()
main = do
  conn <- SQL.connect creds
  (books :: [Book]) <- SQL.query_ conn selectBooks
  print books

This yields the result set:

[ Book
    { id_ = 41472
    , title = "Practical PostgreSQL"
    , first_name = "John"
    , last_name = "Worsley"
   }
, Book
    { id_ = 25908
    , title = "Franklin in the Dark"
    , first_name = "Paulette"
    , last_name = "Bourgeois"
    }
, Book
    { id_ = 1234
    , title = "The Velveteen Rabbit"
    , first_name = "Margery Williams"
    , last_name = "Bianco"
    }
, Book
    { id_ = 190
    , title = "Little Women"
    , first_name = "Louisa May"
    , last_name = "Alcott"
    }
]

Sqlite

The sqlite-simple library provides a binding to the libsqlite3 which can interact with and query SQLite databases. It provides precisely the same interface as the Postgres library of similar namesakes.

query_ :: FromRow r => Connection -> Query -> IO [r]
query :: (ToRow q, FromRow r) => Connection -> Query -> q -> IO [r]
execute :: ToRow q => Connection -> Query -> q -> IO Int64
execute_ :: Connection -> Query -> IO Int64

All datatypes can be serialised to and from result sets by defining FromRow and ToRow datatypes which map your custom datatypes to a RowParser which convets result sets, or a serialisers which maps custom to one of the following primitive sqlite types.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}

import Data.Text as T
import Database.SQLite.Simple as SQL

selectBooks :: SQL.Connection -> IO [(Int, T.Text, Int)]
selectBooks conn = SQL.query_ conn "select id, title, author_id from books"

main :: IO ()
main = do
  conn <- open "books.db"
  books <- selectBooks conn
  pure ()

For examples of serialising to datatype see the previous Postgres section as it has an identical interface.

Redis

Redis is an in-memory key-value store with support for a variety of datastructures. The Haskell exposure is exposed in a Redis monad which sequences a set of redis commands taking ByteString arguments and then executes them against a connection object.

{-# LANGUAGE OverloadedStrings #-}

import Database.Redis
import Data.ByteString.Char8

session :: Redis (Either Reply (Maybe ByteString))
session = do
  set "hello" "haskell"
  get "hello"

main :: IO ()
main = do
  conn <- connect defaultConnectInfo
  res <- runRedis conn session
  print res

Redis is quite often used as a lightweight pubsub server, and the bindings integrate with the Haskell concurrency primitives so that listeners can be sparked and shared across threads off without blocking the main thread.

{-# LANGUAGE OverloadedStrings #-}

import Database.Redis

import Control.Monad
import Control.Monad.Trans
import Data.ByteString.Char8

import Control.Concurrent

subscriber :: Redis ()
subscriber =
 pubSub (subscribe ["news"]) $ \msg -> do
   print msg
   return mempty

publisher :: Redis ()
publisher = forM_ [1..100] $ \n -> publish "news" (pack (show n))

-- connects to localhost:6379
main :: IO ()
main = do
  conn1 <- connect defaultConnectInfo
  conn2 <- connect defaultConnectInfo

  -- Fork off a publisher
  forkIO $ runRedis conn1 publisher

  -- Subscribe for messages
  runRedis conn2 subscriber

Acid State

Acid-state allows us to build a “database” for around our existing Haskell datatypes that guarantees atomic transactions. For example, we can build a simple key-value store wrapped around the Map type.

{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

import Data.Acid
import Data.Typeable
import Data.SafeCopy
import Control.Monad.Reader (ask)

import qualified Data.Map as Map
import qualified Control.Monad.State as S

type Key = String
type Value = String

data Database = Database !(Map.Map Key Value)
    deriving (Show, Ord, Eq, Typeable)

$(deriveSafeCopy 0 'base ''Database)

insertKey :: Key -> Value -> Update Database ()
insertKey key value
    = do Database m <- S.get
         S.put (Database (Map.insert key value m))

lookupKey :: Key -> Query Database (Maybe Value)
lookupKey key
    = do Database m <- ask
         return (Map.lookup key m)

deleteKey :: Key -> Update Database ()
deleteKey key
    = do Database m <- S.get
         S.put (Database (Map.delete key m))

allKeys :: Int -> Query Database [(Key, Value)]
allKeys limit
    = do Database m <- ask
         return $ take limit (Map.toList m)

$(makeAcidic ''Database ['insertKey, 'lookupKey, 'allKeys, 'deleteKey])

fixtures :: Map.Map String String
fixtures = Map.empty

test ::  Key -> Value -> IO ()
test key val = do
    database <- openLocalStateFrom "db/" (Database fixtures)
    result <- update database (InsertKey key val)
    result <- query database (AllKeys 10)
    print result

Selda

Selda is a object relation mapper and database abstraction which provides a higher level interface for creating database schemas for multiple database backends, as well as a type-safe query interface which makes use of advanced type system features to ensure integrity of queries.

Selda is very unique in that it uses the OverloadedLabels extension to query refer to database fields that map directly to fields of records. By deriving Generic and instantiating SqlRow via DeriveAnyClass we can create databases schemas automatically with generic deriving.

data Employee = Employee
  { id        :: ID Employee
  , name      :: Text
  , title     :: Text
  , companyId :: ID Company
  }
  deriving (Generic, SqlRow)

data Company = Company
  { id :: ID Company
  , name :: Text
  }
  deriving (Generic, SqlRow)

instance SqlRow Employee
instance SqlRow Company

The tables themselves can be named, annotated with metadata about constraints and foreign keys and assigned to a Haskell value.

employees :: Table Employee
employees = table "employees" [#id :- autoPrimary, #companyId :- foreignKey companies #id]

companies :: Table Company
companies = table "companies" [#id :- autoPrimary]

This table can then be generated and populated.

main :: IO ()
main = withSQLite "company.sqlite" $ do
  createTable employees
  createTable companies
  -- Populate companies
  insert_
    companies
    [Company (toId 0) "Dunder Mifflin Inc."]
  -- Populate employees
  insert_
    employees
    [ Employee (toId 0) "Michael Scott" "Director" (toId 0),
      Employee (toId 1) "Dwight Schrute" "Regional Manager" (toId 0)
    ]

This will generate the following Sqlite DDL to instantiate the tables directly from the types of the Haskell data strutures.

CREATE TABLEIF NOT EXISTS "companies" 
( 
   "id" integer PRIMARY KEY autoincrement NOT NULL, 
   "name" text NOT NULL 
);

CREATE TABLEIF NOT EXISTS "employees" 
( 
   "id" integer PRIMARY KEY autoincrement NOT NULL, 
   "name" text NOT NULL, 
   "title" text NOT NULL, 
   "companyId" integer NOT NULL, 
   CONSTRAINT "fk0_companyId" FOREIGN KEY ("companyId") REFERENCES "companies"("id" ) 
);

Selda also provides an embedded query language for specifying type-safe queries by allowing you to add the overloaded labels to work with these values directly as SQL selectors.

select :: Relational a => Table a -> Query s (Row s a)
insert :: (MonadSelda m, Relational a) => Table a -> [a] -> m Int
query :: (MonadSelda m, Result a) => Query (Backend m) a -> m [Res a]
from :: (Typeable t, SqlType a) => Selector t a -> Query s (Row s t) -> Query s (Col s a)

restrict :: Same s t => Col s Bool -> Query t ()
order :: (Same s t, SqlType a) => Col s a -> Order -> Query t ()

An example SELECT SQL query:

exampleSelect :: IO ([Employee], [Company])
exampleSelect = withSQLite "company.sqlite" $
  query $ do
      employee <- select employees
      restrict (employee ! #id .>= 1)

GHC

Compiler Design

The flow of code through GHC is a process of translation between several intermediate languages and optimizations and transformations thereof. A common pattern for many of these AST types is they are parametrized over a binder type and at various stages the binders will be transformed, for example the Renamer pass effectively translates the HsSyn datatype from a AST parametrized over literal strings as the user enters into a HsSyn parameterized over qualified names that includes modules and package names into a higher level Name type.

GHC Compiler Passes

Information for each pass can be dumped out via a rather large collection of flags. The GHC internals are very accessible although some passes are somewhat easier to understand than others. Most of the time -ddump-simpl and -ddump-stg are sufficient to get an understanding of how the code will compile, unless of course you’re dealing with very specialized optimizations or hacking on GHC itself.

Flag Action
-ddump-parsed Frontend AST.
-ddump-rn Output of the rename pass.
-ddump-tc Output of the typechecker.
-ddump-splices Output of TemplateHaskell splices.
-ddump-types Typed AST representation.
-ddump-deriv Output of deriving instances.
-ddump-ds Output of the desugar pass.
-ddump-spec Output of specialisation pass.
-ddump-rules Output of applying rewrite rules.
-ddump-vect Output results of vectorize pass.
-ddump-simpl Output of the SimplCore pass.
-ddump-inlinings Output of the inliner.
-ddump-cse Output of the common subexpression elimination pass.
-ddump-prep The CorePrep pass.
-ddump-stg The resulting STG.
-ddump-cmm The resulting Cmm.
-ddump-opt-cmm The resulting Cmm optimization pass.
-ddump-asm The final assembly generated.
-ddump-llvm The final LLVM IR generated.

GHC API

GHC can be used as a library to manipulate and transform Haskell source code into executable code. It consists of many functions, the primary drivers in the pipeline are outlined below.

-- Parse a module.
parseModule :: GhcMonad m => ModSummary -> m ParsedModule

-- Typecheck and rename a parsed module.
typecheckModule :: GhcMonad m => ParsedModule -> m TypecheckedModule

-- Desugar a typechecked module.
desugarModule :: GhcMonad m => TypecheckedModule -> m DesugaredModule

-- Generated ModIface and Generated Code
loadModule :: (TypecheckedMod mod, GhcMonad m) => mod -> m mod

The output of these functions consists of four main data structures:

GHC itself can be used as a library just as any other library. The example below compiles a simple source module “B” that contains no code.

import GHC
import GHC.Paths (libdir)
import DynFlags

targetFile :: FilePath
targetFile = "B.hs"

example :: IO ()
example =
  defaultErrorHandler defaultFatalMessager defaultFlushOut $ do
    runGhc (Just libdir) $ do
      dflags <- getSessionDynFlags
      setSessionDynFlags dflags

      target <- guessTarget targetFile Nothing
      setTargets [target]
      load LoadAllTargets
      modSum <- getModSummary $ mkModuleName "B"

      p <- parseModule modSum      -- ModuleSummary
      t <- typecheckModule p       -- TypecheckedSource
      d <- desugarModule t         -- DesugaredModule
      l <- loadModule d
      let c = coreModule d         -- CoreModule
      g <- getModuleGraph
      mapM showModule g
      return c

main :: IO ()
main = do
   res <- example
   putStrLn $ showSDoc ( ppr res )

DynFlags

The internal compiler state of GHC is largely driven from a set of many configuration flags known as DynFlags. These flags are largely divided into four categories:

These are flags are set via the following modifier functions:

dopt_set :: DynFlags -> DumpFlag -> DynFlags
wopt_set :: DynFlags -> WarningFlag -> DynFlags
xopt_set :: DynFlags -> Extension -> DynFlags
gopt_set :: DynFlags -> GeneralFlag -> DynFlags

See:

Package Databases

A package is a library of Haskell modules known to the compiler. Compilation of a Haskell module through Cabal uses a directory structure known as a package database. This directory is named package.conf.d, and contains a file for each package used for compiling a module and is combined with a binary cache of package’s cabal data in package.cache.

When Cabal operates it stores the active package database in the environment variable: GHC_PACKAGE_PATH

To see which packages are currently available, use the ghc-pkg list command:

$ ghc-pkg list
/home/sdiehl/.ghcup/ghc/8.6.5/lib/ghc-8.6.5/package.conf.d
    Cabal-2.4.0.1
    array-0.5.3.0
    base-4.12.0.0
    binary-0.8.6.0
    bytestring-0.10.8.2
    containers-0.6.0.1
    deepseq-1.4.4.0
    directory-1.3.3.0
    filepath-1.4.2.1
    ghc-8.6.5
    ghc-boot-8.6.5
    ghc-boot-th-8.6.5
    ghc-compact-0.1.0.0
    ghc-heap-8.6.5
    ghc-prim-0.5.3
    ghci-8.6.5
    haskeline-0.7.4.3
    hpc-0.6.0.3
    integer-gmp-1.0.2.0
    libiserv-8.6.3
    mtl-2.2.2
    parsec-3.1.13.0
    pretty-1.1.3.6
    process-1.6.5.0
    rts-1.0
    stm-2.5.0.0
    template-haskell-2.14.0.0
    terminfo-0.4.1.2
    text-1.2.3.1
    time-1.8.0.2
    transformers-0.5.6.2
    unix-2.7.2.2
    xhtml-3000.2.2.1

The package database can be queried for specific metadata of the cabal files associated with each package. For example to query the version of base library currently used for compilation we can query from the ghc-pkg command:

$ ghc-pkg field base version
version: 4.12.0.0

$ ghc-pkg field rts license
license: BSD-3-Clause

$ ghc-pkg field haskeline exposed-modules
exposed-modules:
    System.Console.Haskeline System.Console.Haskeline.Completion
    System.Console.Haskeline.History System.Console.Haskeline.IO
    System.Console.Haskeline.MonadException

HIE Bios

A session is fully specified by a set GHC dynflags that are needed to compile a module. Typically when the compiler is invoked by Cabal these are all generated during compilation time. These flags contain the entire transitive dependency graph of the module, the language extensions and the file system locations of all paths. Given the bifucation of many of these tools setting up the GHC environment from inside of libraries has been non-trivial in the past. HIE-bios is a new library which can read package metadata from Cabal and Stack files and dynamically set up the appropriate session for a project.

Hie-bios will read a Cradle file (hie.yaml) file in the root of the workspace which describes how to setup the environment. For example for using Stack this file would contain:

cradle: {stack: {component: "myproject:lib" }}

While using Cabal the file would contain:

cradle: {cabal: {component: "myproject:lib" }}

This is particularly useful for projects that require access to the internal compiler artifacts or do static analysis on top of Haskell code. An example of setting a compiler session from a cradle is shown below:

import Control.Monad.Trans
import DynFlags
import GHC
import GHC.LanguageExtensions.Type
import GHC.Paths
import GhcMonad
import HIE.Bios
import InteractiveEval
import Outputable

example :: Ghc ()
example = do
  cradle <- liftIO (loadImplicitCradle ".")
  comp <- liftIO $ getCompilerOptions "." cradle
  case comp of
    CradleSuccess r -> do
      liftIO (print "Success")
      session <- initSession r
      dflags <- getSessionDynFlags
      let dflags' = foldl xopt_set dflags [ImplicitPrelude]
      setSessionDynFlags
        dflags'
          { hscTarget = HscInterpreted,
            ghcLink = LinkInMemory,
            ghcMode = CompManager
          }
      liftIO (putStrLn (showSDoc dflags (ppr session)))
    CradleFail err -> liftIO $ print err
    CradleNone -> liftIO $ print "No cradle"
  pure ()

main :: IO ()
main = runGhc (Just GHC.Paths.libdir) example

Abstract Syntax Tree

GHC uses several syntax trees during its compilation. These are defined in the following modules:

GHC’s frontend source tree are grouped into datatypes for the following language constructs and use the naming convention:

Generally all AST in the frontend of the compiler is annotated with position information that is kept around to give better error reporting about the provenance of the specific problematic set of the syntax tree. This is done through a datatype GenLocated with attaches the position information l to element e.

data GenLocated l e = L l e
  deriving (Eq, Ord, Data, Functor, Foldable, Traversable)

type Located = GenLocated SrcSpan

For example, the type of located source expressions is defined by the type:

type LHsExpr p = Located (HsExpr p)
data HsExpr p
  = HsVar (XVar p) (Located (IdP p))    
  | HsLam (XLam p) (MatchGroup p (LHsExpr p))   
  | HsApp (XApp p) (LHsExpr p) (LHsExpr p)      
  ...

The HsSyn AST is reused across multiple compiler passes.

data GhcPass (c :: Pass)
data Pass = Parsed | Renamed | Typechecked

type GhcPs = GhcPass 'Parsed
type GhcRn = GhcPass 'Renamed
type GhcTc = GhcPass 'Typechecked
type family IdP p
type instance IdP GhcPs = RdrName
type instance IdP GhcRn = Name
type instance IdP GhcTc = Id

type LIdP p = Located (IdP p)

Individual elements of the syntax are defined by type families which a single parameter for the pass.

type family XVar x
type family XLam x
type family XApp x

The type of HsExpr used in the parser pass can then be defined simply as LHsExpr GhcPs and from the typechecker pass LHsExpr GhcTc.

Names

GHC has an interesting zoo of names it uses internally for identifiers in the syntax tree. There are more than the following but these are the primary ones you will see most often:

See: Trees That Grow

Parser

The GHC parser is itself written in Happy. It defines its Parser monad as the following definition which emits a sequences of Located tokens with the lexemes position information. The parser is embedded inside the P monad.

%monad { P } { >>= } { return }
%lexer { (lexer True) } { L _ ITeof }
%tokentype { (Located Token) }

Since there are many flavours of Haskell syntax enabled by language syntax extensions, the monad parser itself is passed a specific set of DynFlags which specify the language specific Haskell syntax to parse. An example parser invocation would look like:

runParser :: DynFlags -> String -> P a -> ParseResult a
runParser flags str parser = unP parser parseState
where
  filename   = "<interactive>"
  location   = mkRealSrcLoc (mkFastString filename) 1 1
  buffer     = stringToStringBuffer str
  parseState = mkPState flags buffer location

The parser argument above can be one of the following Happy entry point functions which parse different fragments of the Haskell grammar.

See:

Outputable

GHC internally use a pretty printer class for rendering its core structures out to text. This is based on the Wadler-Leijen style and uses a Outputable class as its interface:

class Outputable a where
  ppr :: a -> SDoc
  pprPrec :: Rational -> a -> SDoc

The primary renderer for SDoc types is showSDoc which takes as argument a set of DynFlags which determine how the structure are printed.

showSDoc :: DynFlags -> SDoc -> String

We can also cheat and use a unsafe show which uses a dummy set of DynFlags.

-- | Show a GHC.Outputable structure
showGhc :: (GHC.Outputable a) => a -> String
showGhc = GHC.showPpr GHC.unsafeGlobalDynFlags

See:

Datatypes

GHC has many datatypes but several of them are central data structures that are the core datatypes that are manipulated during compilation. These are divided into seven core categories.

Monads

The GHC monads which encapsulate the compiler driver pipeline and statefully hold the interactions between the user and the internal compiler phases.

Names

Session

HsSyn

CoreSyn

The core syntax is a very small set of constructors for the Core intermediate language. Most of the datatypes are contained in the Expr datatype. All core expressions consists of toplevel Bind of expressions objects.

StgSyn

Spineless tagless G-machine or STG is the intermediate representation GHC uses before generating native code. It is an even simpler language than Core and models a virtual machine which maps to the native compilation target.

Core

Core is the explicitly typed System-F family syntax through which all Haskell constructs can be expressed.

data Bind b
  = NonRec b (Expr b)
  | Rec [(b, Expr b)]

data Expr b
  = Var Id
  | Lit Literal  
  | App (Expr b) (Arg b)
  | Lam b (Expr b)
  | Let (Bind b) (Expr b)
  | Case (Expr b) b Type [Alt b]
  | Cast (Expr b) Coercion
  | Tick (Tickish Id) (Expr b)
  | Type Type
  | Coercion Coercion

To inspect the core from GHCi we can invoke it using the following flags and the following shell alias. We have explicitly disabled the printing of certain metadata and longform names to make the representation easier to read.

alias ghci-core="ghci -ddump-simpl -dsuppress-idinfo \
-dsuppress-coercions -dsuppress-type-applications \
-dsuppress-uniques -dsuppress-module-prefixes"

At the interactive prompt we can then explore the core representation interactively:

$ ghci-core
λ: let f x = x + 2 ; f :: Int -> Int

==================== Simplified expression ====================
returnIO
  (: ((\ (x :: Int) -> + $fNumInt x (I# 2)) `cast` ...) ([]))

λ: let f x = (x, x)

==================== Simplified expression ====================
returnIO (: ((\ (@ t) (x :: t) -> (x, x)) `cast` ...) ([]))

ghc-core is also very useful for looking at GHC’s compilation artifacts.

$ ghc-core --no-cast --no-asm

Alternatively the major stages of the compiler ( parse tree, core, stg, cmm, asm ) can be manually outputted and inspected by passing several flags to the compiler:

$ ghc -ddump-to-file -ddump-parsed -ddump-simpl -ddump-stg -ddump-cmm -ddump-asm

Reading Core

Core from GHC is roughly human readable, but it’s helpful to look at simple human written examples to get the hang of what’s going on.

id :: a -> a
id x = x
id :: forall a. a -> a
id = \ (@ a) (x :: a) -> x

idInt :: GHC.Types.Int -> GHC.Types.Int
idInt = id @ GHC.Types.Int
compose :: (b -> c) -> (a -> b) -> a -> c
compose f g x = f (g x)
compose :: forall b c a. (b -> c) -> (a -> b) -> a -> c
compose = \ (@ b) (@ c) (@ a) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)
map :: (a -> b) -> [a] -> [b]
map f []     = []
map f (x:xs) = f x : map f xs
map :: forall a b. (a -> b) -> [a] -> [b]
map =
  \ (@ a) (@ b) (f :: a -> b) (xs :: [a]) ->
    case xs of _ {
      []     -> [] @ b;
      : y ys -> : @ b (f y) (map @ a @ b f ys)
    }

Machine generated names are created for a lot of transformation of Core. Generally they consist of a prefix and unique identifier. The prefix is often pass specific ( e.g ds for desugar generated names) and sometimes specific names are generated for specific automatically generated code. A list of the common prefixes and their meaning is show below.

Prefix Description
$f... Dict-fun identifiers (from inst decls)
$dmop Default method for ‘op’
$wf Worker for function ‘f’
$sf Specialised version of f
$gdm Generated class method
$d Dictionary names
$s Specialized function name
$f Foreign export
$pnC n’th superclass selector for class C
T:C Tycon for dictionary for class C
D:C Data constructor for dictionary for class C
NTCo:T Coercion for newtype T to its underlying runtime representation

Of important note is that the Λ and λ for type-level and value-level lambda abstraction are represented by the same symbol (\) in core, which is a simplifying detail of the GHC’s implementation but a source of some confusion when starting.

-- System-F Notation
Λ b c a. λ (f1 : b -> c) (g : a -> b) (x1 : a). f1 (g x1)

-- Haskell Core
\ (@ b) (@ c) (@ a) (f1 :: b -> c) (g :: a -> b) (x1 :: a) -> f1 (g x1)

The seq function has an intuitive implementation in the Core language.

x `seq` y
case x of _ {
  __DEFAULT -> y
}

One particularly notable case of the Core desugaring process is that pattern matching on overloaded numbers implicitly translates into equality test (i.e. Eq).

f 0 = 1
f 1 = 2
f 2 = 3
f 3 = 4
f 4 = 5
f _ = 0


f :: forall a b. (Eq a, Num a, Num b) => a -> b
f =
  \ (@ a)
    (@ b)
    ($dEq :: Eq a)
    ($dNum :: Num a)
    ($dNum1 :: Num b)
    (ds :: a) ->
    case == $dEq ds (fromInteger $dNum (__integer 0)) of _ {
      False ->
        case == $dEq ds (fromInteger $dNum (__integer 1)) of _ {
          False ->
            case == $dEq ds (fromInteger $dNum (__integer 2)) of _ {
              False ->
                case == $dEq ds (fromInteger $dNum (__integer 3)) of _ {
                  False ->
                    case == $dEq ds (fromInteger $dNum (__integer 4)) of _ {
                      False -> fromInteger $dNum1 (__integer 0);
                      True -> fromInteger $dNum1 (__integer 5)
                    };
                  True -> fromInteger $dNum1 (__integer 4)
                };
              True -> fromInteger $dNum1 (__integer 3)
            };
          True -> fromInteger $dNum1 (__integer 2)
        };
      True -> fromInteger $dNum1 (__integer 1)
    }

Of course, adding a concrete type signature changes the desugar just matching on the unboxed values.

f :: Int -> Int
f =
  \ (ds :: Int) ->
    case ds of _ { I# ds1 ->
    case ds1 of _ {
      __DEFAULT -> I# 0;
      0 -> I# 1;
      1 -> I# 2;
      2 -> I# 3;
      3 -> I# 4;
      4 -> I# 5
    }
    }

See:

Inliner

infixr 0  $

($):: (a -> b) -> a -> b
f $ x =  f x

Having to enter a secondary closure every time we used ($) would introduce an enormous overhead. Fortunately GHC has a pass to eliminate small functions like this by simply replacing the function call with the body of its definition at appropriate call-sites. The compiler contains a variety of heuristics for determining when this kind of substitution is appropriate and the potential costs involved.

In addition to the automatic inliner, manual pragmas are provided for more granular control over inlining. It’s important to note that naive inlining quite often results in significantly worse performance and longer compilation times.

{-# INLINE func #-}
{-# INLINABLE func #-}
{-# NOINLINE func #-}

For example the contrived case where we apply a binary function to two arguments. The function body is small and instead of entering another closure just to apply the given function, we could in fact just inline the function application at the call site.

{-# INLINE foo #-}
{-# NOINLINE bar #-}

foo :: (a -> b -> c) -> a -> b -> c
foo f x y = f x y

bar :: (a -> b -> c) -> a -> b -> c
bar f x y = f x y

test1 :: Int
test1 = foo (+) 10 20

test2 :: Int
test2 = bar (+) 20 30

Looking at the core, we can see that in test1 the function has indeed been expanded at the call site and simply performs the addition there instead of another indirection.

test1 :: Int
test1 =
  let {
    f :: Int -> Int -> Int
    f = + $fNumInt } in
  let {
    x :: Int
    x = I# 10 } in
  let {
    y :: Int
    y = I# 20 } in
  f x y

test2 :: Int
test2 = bar (+ $fNumInt) (I# 20) (I# 30)

Cases marked with NOINLINE generally indicate that the logic in the function is using something like unsafePerformIO or some other unholy function. In these cases naive inlining might duplicate effects at multiple call-sites throughout the program which would be undesirable.

See:

Primops

GHC has many primitive operations that are intrinsics built into the compiler. You can manually invoke these functions inside of optimised code which allows you to drop down to the same level of performance you can achieve in C or by hand-writing inline assembly. These functions are intrinsics that are builtin to the compiler and operate over unboxed machines types.

(+#)        :: Int# -> Int# -> Int#
gtChar#     :: Char# -> Char# -> Int#
byteSwap64# :: Word# -> Word#

Depending on the choice of code generator and CPU architecture these instructions will map to single CPU instructions over machines.

See ghc-prim

SIMD Intrinsics

GHC has procedures for generating code that use SIMD vector instructions when using the LLVM backend (-fllvm). For example the following <8xfloat> and <8xdouble> are used internally by the following datatypes exposed by ghc-prim.

And operations over these map to single CPU instructions that work with the bulk values instead of single values. For instance adding two vectors:

-- Add two vectors element-wise.
plusDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8#

For example:

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# OPTIONS_GHC -mavx #-}
{-# OPTIONS_GHC -msse #-}
{-# OPTIONS_GHC -msse2 #-}
{-# OPTIONS_GHC -msse4 #-}

import GHC.Exts
import GHC.Prim

data FloatX4 = FX4# FloatX4#

instance Show FloatX4 where
  show (FX4# f) = case unpackFloatX4# f of
    (# a, b, c, d #) -> show (F# a, F# b, F# c, F# d)

main :: IO ()
main = do
  let a = packFloatX4# (# 4.5#, 7.8#, 2.3#, 6.5# #)
  let b = packFloatX4# (# 8.2#, 6.3#, 4.7#, 9.2# #)
  let c = FX4# (broadcastFloatX4# 1.5#)
  print (FX4# a)
  print (FX4# (plusFloatX4# a b))
  print c

When you generate this code to LLVM you will see that GHC is indeed allocating the values as vector types if you browse the assembly output.

  %XMM1_Var = alloca <4 x i32>, i32 1
  store <4 x i32> undef, <4 x i32>* %XMM1_Var, align 1

Using the native SIMD instructions you can perform low-level vectorised operations over the unboxed memory, typically found in numerical computing problems.

See: SIMD Operations

Rewrite Rules

Consider the composition of two fmaps. This operation maps a function g over a list xs and then maps a function f over the resulting list. This results in two full traversals of a list of length n.

map f (map g xs)

This is equivalent to the following more efficient form which applies the composition of f and g over the list elementwise resulting in a single iteration of the list instead. For large lists this will be vastly more efficient.

map (f.g) xs

GHC is a clever compiler and allows us to write custom rules to transform the AST of our programs at compile time in order to do these kind of optimisations. These are called fusion rules and many high-performance libraries make use of them to generate more optimal code.

By adding a RULES pragma to a module where map is defined we can tell GHC to rewrite all cases of double map to their more optimal form across all modules that use this definition. Rule are applied during the optimiser pass in GHC compilation.

{-# RULES     "map/map"    forall f g xs.  map f (map g xs) = map (f.g) xs #-}

It is important to note that these rewrite rules must be syntactically valid Haskell, but GHC makes no guarantees that they are semantically valid. One could very easily introduce a rewrite rule that introduces subtle bugs by redefining functions nonsensically and GHC will happily rewrite away. Be careful when doing these kind of optimisations.

Boot Libraries

GHC itself ships with a variety of libraries that are necessary to bootstrap the compiler and compile itself.

Dictionaries

The Haskell language defines the notion of Typeclasses but is agnostic to how they are implemented in a Haskell compiler. GHC’s particular implementation uses a pass called the dictionary passing translation part of the elaboration phase of the typechecker which translates Core functions with typeclass constraints into implicit parameters of which record-like structures containing the function implementations are passed.

class Num a where
  (+) :: a -> a -> a
  (*) :: a -> a -> a
  negate :: a -> a

This class can be thought as the implementation equivalent to the following parameterized record of functions.

data DNum a = DNum (a -> a -> a) (a -> a -> a) (a -> a)

add (DNum a m n) = a
mul (DNum a m n) = m
neg (DNum a m n) = n

numDInt :: DNum Int
numDInt = DNum plusInt timesInt negateInt

numDFloat :: DNum Float
numDFloat = DNum plusFloat timesFloat negateFloat
+ :: forall a. Num a => a -> a -> a
+ = \ (@ a) (tpl :: Num a) ->
  case tpl of _ { D:Num tpl _ _ -> tpl }

* :: forall a. Num a => a -> a -> a
* = \ (@ a) (tpl :: Num a) ->
  case tpl of _ { D:Num _ tpl _ -> tpl }

negate :: forall a. Num a => a -> a
negate = \ (@ a) (tpl :: Num a) ->
  case tpl of _ { D:Num _ _ tpl -> tpl }

Num and Ord have simple translations but for monads with existential type variables in their signatures, the only way to represent the equivalent dictionary is using RankNTypes. In addition a typeclass may also include superclasses which would be included in the typeclass dictionary and parameterized over the same arguments and an implicit superclass constructor function is created to pull out functions from the superclass for the current monad.

data DMonad m = DMonad
  { bind   :: forall a b. m a -> (a -> m b) -> m b
  , return :: forall a. a -> m a
  }
class (Functor t, Foldable t) => Traversable t where
  traverse :: Applicative f => (a -> f b) -> t a -> f (t b)
  traverse f = sequenceA . fmap f
data DTraversable t = DTraversable
  { dFunctorTraversable :: DFunctor t  -- superclass dictionary
  , dFoldableTraversable :: DFoldable t -- superclass dictionary
  , traverse :: forall a. Applicative f => (a -> f b) -> t a -> f (t b)
  }

Indeed this is not that far from how GHC actually implements typeclasses. It elaborates into projection functions and data constructors nearly identical to this, and are expanded out to a dictionary argument for each typeclass constraint of every polymorphic function.

Specialization

Overloading in Haskell is normally not entirely free by default, although with an optimization called specialization it can be made to have zero cost at specific points in the code where performance is crucial. This is not enabled by default by virtue of the fact that GHC is not a whole-program optimizing compiler and most optimizations ( not all ) stop at module boundaries.

GHC’s method of implementing typeclasses means that explicit dictionaries are threaded around implicitly throughout the call sites. This is normally the most natural way to implement this functionality since it preserves separate compilation. A function can be compiled independently of where it is declared, not recompiled at every point in the program where it’s called. The dictionary passing allows the caller to thread the implementation logic for the types to the call-site where it can then be used throughout the body of the function.

Of course this means that in order to get at a specific typeclass function we need to project ( possibly multiple times ) into the dictionary structure to pluck out the function reference. The runtime makes this very cheap but not entirely free.

Many C++ compilers or whole program optimizing compilers do the opposite however, they explicitly specialize each and every function at the call site replacing the overloaded function with its type-specific implementation. We can selectively enable this kind of behavior using class specialization.

module Specialize (spec, nonspec, f) where

{-# SPECIALIZE INLINE f :: Double -> Double -> Double #-}

f :: Floating a => a -> a -> a
f x y = exp (x + y) * exp (x + y)

nonspec :: Float
nonspec = f (10 :: Float) (20 :: Float)

spec :: Double
spec = f (10 :: Double) (20 :: Double)

Non-specialized

f :: forall a. Floating a => a -> a -> a
f =
  \ (@ a) ($dFloating :: Floating a) (eta :: a) (eta1 :: a) ->
    let {
      a :: Fractional a
      a = $p1Floating @ a $dFloating } in
    let {
      $dNum :: Num a
      $dNum = $p1Fractional @ a a } in
    * @ a
      $dNum
      (exp @ a $dFloating (+ @ a $dNum eta eta1))
      (exp @ a $dFloating (+ @ a $dNum eta eta1))

In the specialized version the typeclass operations placed directly at the call site and are simply unboxed arithmetic. This will map to a tight set of sequential CPU instructions and is very likely the same code generated by C.

spec :: Double
spec = D# (*## (expDouble# 30.0) (expDouble# 30.0))

The non-specialized version has to project into the typeclass dictionary ($fFloatingFloat) 6 times and likely go through around 25 branches to perform the same operation.

nonspec :: Float
nonspec =
  f @ Float $fFloatingFloat (F# (__float 10.0)) (F# (__float 20.0))

For a tight loop over numeric types specializing at the call site can result in orders of magnitude performance increase. Although the cost in compile-time can often be non-trivial and when used at many function call-sites this can slow GHC’s simplifier pass to a crawl.

The best advice is profile and look for large uses of dictionary projection in tight loops and then specialize and inline in these places.

Using the SPECIALISE INLINE pragma can unintentionally cause GHC to diverge if applied over a recursive function, it will try to specialize itself infinitely.

Static Compilation

On Linux, Haskell programs can be compiled into a standalone statically linked binary that includes the runtime statically linked into it.

$ ghc -O2 --make -static -optc-static -optl-static -optl-pthread Example.hs
$ file Example
Example: ELF 64-bit LSB executable, x86-64, version 1 (GNU/Linux), statically linked, for GNU/Linux 2.6.32, not stripped
$ ldd Example
        not a dynamic executable

In addition the file size of the resulting binary can be reduced by stripping unneeded symbols.

$ strip Example

upx can additionally be used to compress the size of the executable down further.

Unboxed Types

The usual numerics types in Haskell can be considered to be a regular algebraic datatype with special constructor arguments for their underlying unboxed values. Normally unboxed types and explicit unboxing are not used in normal code, they are wired-in to the compiler.

data Int = I# Int#

data Integer
  = S# Int#              -- Small integers
  | J# Int# ByteArray#   -- Large GMP integers

data Float = F# Float#
Syntax Primitive Type
3# GHC.Prim.Int#
3## GHC.Prim.Word#
3.14# GHC.Prim.Float#
3.14## GHC.Prim.Double#
'c'# GHC.Prim.Char#
"Haskell"## GHC.Prim.Addr#

An unboxed type has kind # and will never unify a type variable of kind *. Intuitively a type with kind * indicates a type with a uniform runtime representation that can be used polymorphically.

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.Exts
import GHC.Prim

ex1 :: Bool
ex1 = isTrue# (gtChar# a# b#)
  where
    !(C# a#) = 'a'
    !(C# b#) = 'b'

ex2 :: Int
ex2 = I# (a# +# b#)
  where
    !(I# a#) = 1
    !(I# b#) = 2

ex3 :: Int
ex3 = (I# (1# +# 2# *# 3# +# 4#))

ex4 :: (Int, Int)
ex4 = (I# (dataToTag# False), I# (dataToTag# True))

The function for integer arithmetic used in the Num typeclass for Int is just pattern matching on this type to reveal the underlying unboxed value, performing the builtin arithmetic and then performing the packing up into Int again.

plusInt :: Int -> Int -> Int
(I# x) `plusInt` (I# y) = I# (x +# y)

Where (+#) is a low level function built into GHC that maps to intrinsic integer addition instruction for the CPU.

plusInt :: Int -> Int -> Int
plusInt a b = case a of {
    (I# a_) -> case b of {
      (I# b_) -> I# (+# a_ b_);
    };
};

Runtime values in Haskell are by default represented uniformly by a boxed StgClosure* struct which itself contains several payload values, which can themselves either be pointers to other boxed values or to unboxed literal values that fit within the system word size and are stored directly within the closure in memory. The layout of the box is described by a bitmap in the header for the closure which describes which values in the payload are either pointers or non-pointers.

The unpackClosure# primop can be used to extract this information at runtime by reading off the bitmap on the closure.

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

--{-# OPTIONS_GHC -O1 #-}

module Main where

import Foreign
import GHC.Base
import GHC.Exts

data Size
  = Size
      { ptrs :: Int,
        nptrs :: Int,
        size :: Int
      }
  deriving (Show)

unsafeSizeof :: a -> Size
unsafeSizeof a =
  case unpackClosure# a of
    (# x, ptrs, nptrs #) ->
      let header = sizeOf (undefined :: Int)
          ptr_c = I# (sizeofArray# ptrs)
          nptr_c = I# (sizeofByteArray# nptrs) `div` sizeOf (undefined :: Word)
          payload = I# (sizeofArray# ptrs +# sizeofByteArray# nptrs)
          size = header + payload
       in Size ptr_c nptr_c size

data A = A {-# UNPACK #-} !Int

data B = B Int

main :: IO ()
main = do
  print (unsafeSizeof (A 42))
  print (unsafeSizeof (B 42))

For example the datatype with the UNPACK pragma contains 1 non-pointer and 0 pointers.

data A = A {-# UNPACK #-} !Int
Size {ptrs = 0, nptrs = 1, size = 16}

While the default packed datatype contains 1 pointer and 0 non-pointers.

data B = B Int
Size {ptrs = 1, nptrs = 0, size = 9}

The closure representation for data constructors are also “tagged” at the runtime with the tag of the specific constructor. This is however not a runtime type tag since there is no way to recover the type from the tag as all constructors simply use the sequence (0, 1, 2, …). The tag is used to discriminate cases in pattern matching. The builtin dataToTag# can be used to pluck off the tag for an arbitrary datatype. This is used in some cases when desugaring pattern matches.

dataToTag# :: a -> Int#

For example:

-- data Bool = False | True
-- False ~ 0
-- True  ~ 1

a :: (Int, Int)
a = (I# (dataToTag# False), I# (dataToTag# True))
-- (0, 1)

-- data Ordering = LT | EQ | GT
-- LT ~ 0
-- EQ ~ 1
-- GT ~ 2

b :: (Int, Int, Int)
b = (I# (dataToTag# LT), I# (dataToTag# EQ), I# (dataToTag# GT))
-- (0, 1, 2)

-- data Either a b = Left a | Right b
-- Left ~ 0
-- Right ~ 1

c :: (Int, Int)
c = (I# (dataToTag# (Left 0)), I# (dataToTag# (Right 1)))
-- (0, 1)

String literals included in the source code are also translated into several primop operations. The Addr# type in Haskell stands for a static contiguous buffer pre-allocated on the Haskell heap that can hold a char* sequence. The operation unpackCString# can scan this buffer and fold it up into a list of Chars from inside Haskell.

unpackCString# :: Addr# -> [Char]

This is done in the early frontend desugarer phase, where literals are translated into Addr# inline instead of giant chain of Cons’d characters. So our “Hello World” translates into the following Core:

-- print "Hello World"
print (unpackCString# "Hello World"#)

See:

IO/ST

Both the IO and the ST monad have special state in the GHC runtime and share a very similar implementation. Both ST a and IO a are passing around an unboxed tuple of the form:

(# token, a #)

The RealWorld# token is “deeply magical” and doesn’t actually expand into any code when compiled, but simply threaded around through every bind of the IO or ST monad and has several properties of being unique and not being able to be duplicated to ensure sequential IO actions are actually sequential. unsafePerformIO can thought of as the unique operation which discards the world token and plucks the a out, and is as the name implies not normally safe.

The PrimMonad abstracts over both these monads with an associated data family for the world token or ST thread, and can be used to write operations that generic over both ST and IO. This is used extensively inside of the vector package to allow vector algorithms to be written generically either inside of IO or ST.

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}

import GHC.IO ( IO(..) )
import GHC.Prim ( State#, RealWorld )
import GHC.Base ( realWorld# )

instance  Monad IO  where
    m >> k    = m >>= \ _ -> k
    return    = returnIO
    (>>=)     = bindIO
    fail s    = failIO s

returnIO :: a -> IO a
returnIO x = IO $ \ s -> (# s, x #)

bindIO :: IO a -> (a -> IO b) -> IO b
bindIO (IO m) k = IO $ \ s -> case m s of (# new_s, a #) -> unIO (k a) new_s

thenIO :: IO a -> IO b -> IO b
thenIO (IO m) k = IO $ \ s -> case m s of (# new_s, _ #) -> unIO k new_s

unIO :: IO a -> (State# RealWorld -> (# State# RealWorld, a #))
unIO (IO a) = a
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE TypeFamilies #-}

import GHC.IO ( IO(..) )
import GHC.ST ( ST(..) )
import GHC.Prim ( State#, RealWorld )
import GHC.Base ( realWorld# )

class Monad m => PrimMonad m where
  type PrimState m
  primitive :: (State# (PrimState m) -> (# State# (PrimState m), a #)) -> m a
  internal :: m a -> State# (PrimState m) -> (# State# (PrimState m), a #)

instance PrimMonad IO where
  type PrimState IO = RealWorld
  primitive = IO
  internal (IO p) = p

instance PrimMonad (ST s) where
  type PrimState (ST s) = s
  primitive = ST
  internal (ST p) = p

ghc-heap-view

Through some dark runtime magic we can actually inspect the StgClosure structures at runtime using various C and Cmm hacks to probe at the fields of the structure’s representation to the runtime. The library ghc-heap-view can be used to introspect such things, although there is really no use for this kind of thing in everyday code it is very helpful when studying the GHC internals to be able to inspect the runtime implementation details and get at the raw bits underlying all Haskell types.

{-# LANGUAGE MagicHash #-}

import GHC.Exts
import GHC.HeapView

import System.Mem

main :: IO ()
main = do
  -- Constr
  clo <- getClosureData $! ([1,2,3] :: [Int])
  print clo

  -- Thunk
  let thunk = id (1+1)
  clo <- getClosureData thunk
  print clo

  -- evaluate to WHNF
  thunk `seq` return ()

  -- Indirection
  clo <- getClosureData thunk
  print clo

  -- force garbage collection
  performGC

  -- Value
  clo <- getClosureData thunk
  print clo

A constructor (in this for cons constructor of list type) is represented by a CONSTR closure that holds two pointers to the head and the tail. The integer in the head argument is a static reference to the pre-allocated number and we see a single static reference in the SRT (static reference table).

ConsClosure {
  info = StgInfoTable {
    ptrs = 2,
    nptrs = 0,
    tipe = CONSTR_2_0,
    srtlen = 1
  },
  ptrArgs = [0x000000000074aba8/1,0x00007fca10504260/2],
  dataArgs = [],
  pkg = "ghc-prim",
  modl = "GHC.Types",
  name = ":"
}

We can also observe the evaluation and update of a thunk in process ( id (1+1) ). The initial thunk is simply a thunk type with a pointer to the code to evaluate it to a value.

ThunkClosure {
  info = StgInfoTable {
    ptrs = 0,
    nptrs = 0,
    tipe = THUNK,
    srtlen = 9
  },
  ptrArgs = [],
  dataArgs = []
}

When forced it is then evaluated and replaced with an Indirection closure which points at the computed value.

BlackholeClosure {
  info = StgInfoTable {
    ptrs = 1,
    nptrs = 0,
    tipe = BLACKHOLE,
    srtlen = 0
  },
  indirectee = 0x00007fca10511e88/1
}

When the copying garbage collector passes over the indirection, it then simply replaces the indirection with a reference to the actual computed value computed by indirectee so that future access does need to chase a pointer through the indirection pointer to get the result.

ConsClosure {
  info = StgInfoTable {
    ptrs = 0,
    nptrs = 1,
    tipe = CONSTR_0_1,
    srtlen = 0
  },
  ptrArgs = [],
  dataArgs = [2],
  pkg = "integer-gmp",
  modl = "GHC.Integer.Type",
  name = "S#"
}

STG

After being compiled into Core, a program is translated into a very similar intermediate form known as STG ( Spineless Tagless G-Machine ) an abstract machine model that makes all laziness explicit. The spineless indicates that function applications in the language do not have a spine of applications of functions are collapsed into a sequence of arguments. Currying is still present in the semantics since arity information is stored and partially applied functions will evaluate differently than saturated functions.

-- Spine
f x y z = App (App (App f x) y) z

-- Spineless
f x y z = App f [x, y, z]

All let statements in STG bind a name to a lambda form. A lambda form with no arguments is a thunk, while a lambda-form with arguments indicates that a closure is to be allocated that captures the variables explicitly mentioned.

Thunks themselves are either reentrant (\r) or updatable (\u) indicating that the thunk and either yields a value to the stack or is allocated on the heap after the update frame is evaluated. All subsequent entries of the thunk will yield the already-computed value without needing to redo the same work.

A lambda form also indicates the static reference table a collection of references to static heap allocated values referred to by the body of the function.

For example turning on -ddump-stg we can see the expansion of the following compose function.

-- Frontend
compose f g = \x -> f (g x)
-- Core
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t
compose =
  \ (@ t) (@ t1) (@ t2) (f :: t1 -> t) (g :: t2 -> t1) (x :: t2) ->
    f (g x)
-- STG
compose :: forall t t1 t2. (t1 -> t) -> (t2 -> t1) -> t2 -> t =
    \r [f g x] let { sat :: t1 = \u [] g x; } in  f sat;
SRT(compose): []

For a more sophisticated example, let’s trace the compilation of the factorial function.

-- Frontend
fac :: Int -> Int -> Int
fac a 0 = a
fac a n = fac (n*a) (n-1)
-- Core
Rec {
fac :: Int -> Int -> Int
fac =
  \ (a :: Int) (ds :: Int) ->
    case ds of wild { I# ds1 ->
    case ds1 of _ {
      __DEFAULT ->
        fac (* @ Int $fNumInt wild a) (- @ Int $fNumInt wild (I# 1));
      0 -> a
    }
    }
end Rec }
-- STG
fac :: Int -> Int -> Int =
    \r srt:(0,*bitmap*) [a ds]
        case ds of wild {
          I# ds1 ->
              case ds1 of _ {
                __DEFAULT ->
                    let {
                      sat :: Int =
                          \u srt:(1,*bitmap*) []
                              let { sat :: Int = NO_CCS I#! [1]; } in  - $fNumInt wild sat; } in
                    let { sat :: Int = \u srt:(1,*bitmap*) [] * $fNumInt wild a;
                    } in  fac sat sat;
                0 -> a;
              };
        };
SRT(fac): [fac, $fNumInt]

Notice that the factorial function allocates two thunks ( look for \u) inside of the loop which are updated when computed. It also includes static references to both itself (for recursion) and the dictionary for instance of Num typeclass over the type Int.

The type system of STG system consists of the following types. The size of these types depend on the size of a void* pointer on the architecture.

Worker/Wrapper

With -O2 turned on GHC will perform a special optimization known as the Worker-Wrapper transformation which will split the logic of the factorial function across two definitions, the worker will operate over stack unboxed allocated machine integers which compiles into a tight inner loop while the wrapper calls into the worker and collects the end result of the loop and packages it back up into a boxed heap value. This can often be an order of of magnitude faster than the naive implementation which needs to pack and unpack the boxed integers on every iteration.

-- Worker
$wfac :: Int# -> Int# -> Int# =
    \r [ww ww1]
        case ww1 of ds {
          __DEFAULT ->
              case -# [ds 1] of sat {
                __DEFAULT ->
                    case *# [ds ww] of sat { __DEFAULT -> $wfac sat sat; };
              };
          0 -> ww;
        };
SRT($wfac): []

-- Wrapper
fac :: Int -> Int -> Int =
    \r [w w1]
        case w of _ {
          I# ww ->
              case w1 of _ {
                I# ww1 -> case $wfac ww ww1 of ww2 { __DEFAULT -> I# [ww2]; };
              };
        };
SRT(fac): []

See:

Z-Encoding

The Z-encoding is Haskell’s convention for generating names that are safely represented in the compiler target language. Simply put the z-encoding renames many symbolic characters into special sequences of the z character.

String Z-Encoded String
foo foo
z zz
Z ZZ
() Z0T
(,) Z2T
(,,) Z3T
_ zu
( ZL
) ZR
: ZC
# zh
. zi
(#,#) Z2H
(->) ZLzmzgZR

In this way we don’t have to generate unique unidentifiable names for character rich names and can simply have a straightforward way to translate them into something unique but identifiable.

So for some example names from GHC generated code:

Z-Encoded String Decoded String
ZCMain_main_closure :Main_main_closure
base_GHCziBase_map_closure base_GHC.Base_map_closure
base_GHCziInt_I32zh_con_info base_GHC.Int_I32#_con_info
ghczmprim_GHCziTuple_Z3T_con_info ghc-prim_GHC.Tuple_(,,)_con_in
ghczmprim_GHCziTypes_ZC_con_info ghc-prim_GHC.Types_:_con_info

Cmm

Cmm is GHC’s complex internal intermediate representation that maps directly onto the generated code for the compiler target. Cmm code generated from Haskell is CPS-converted, all functions never return a value, they simply call the next frame in the continuation stack. All evaluation of functions proceed by indirectly jumping to a code object with its arguments placed on the stack by the caller.

This is drastically different than C’s evaluation model, where are placed on the stack and a function yields a value to the stack after it returns.

There are several common suffixes you’ll see used in all closures and function names:

Symbol Meaning
0 No argument
p Garbage Collected Pointer
n Word-sized non-pointer
l 64-bit non-pointer (long)
v Void
f Float
d Double
v16 16-byte vector
v32 32-byte vector
v64 64-byte vector

Cmm Registers

There are 10 registers that described in the machine model. Sp is the pointer to top of the stack, SpLim is the pointer to last element in the stack. Hp is the heap pointer, used for allocation and garbage collection with HpLim the current heap limit.

The R1 register always holds the active closure, and subsequent registers are arguments passed in registers. Functions with more than 10 values spill into memory.

Examples

To understand Cmm it is useful to look at the code generated by the equivalent Haskell and slowly understand the equivalence and mechanical translation maps one to the other.

There are generally two parts to every Cmm definition, the info table and the entry code. The info table maps directly StgInfoTable struct and contains various fields related to the type of the closure, its payload, and references. The code objects are basic blocks of generated code that correspond to the logic of the Haskell function/constructor.

For the simplest example consider a constant static constructor. Simply a function which yields the Unit value. In this case the function is simply a constructor with no payload, and is statically allocated.

Lets consider a few examples to develop some intuition about the Cmm layout for simple Haskell programs.

Haskell:

unit = ()

Cmm:

[section "data" {
     unit_closure:
         const ()_static_info;
 }]

Consider a static constructor with an argument.

Haskell:

con :: Maybe ()
con = Just ()

Cmm:

[section "data" {
     con_closure:
         const Just_static_info;
         const ()_closure+1;
         const 1;
 }]

Consider a literal constant. This is a static value.

Haskell:

lit :: Int
lit = 1

Cmm:

[section "data" {
     lit_closure:
         const I#_static_info;
         const 1;
 }]

Consider the identity function.

Haskell:

id x = x

Cmm:

[section "data" {
     id_closure:
         const id_info;
 },
 id_info()
         { label: id_info
           rep:HeapRep static { Fun {arity: 1 fun_type: ArgSpec 5} }
         }
     ch1:
         R1 = R2;
         jump stg_ap_0_fast; // [R1]
 }]

Consider the constant function.

Haskell:

constant x y = x

Cmm:

[section "data" {
     constant_closure:
         const constant_info;
 },
 constant_info()
         { label: constant_info
           rep:HeapRep static { Fun {arity: 2 fun_type: ArgSpec 12} }
         }
     cgT:
         R1 = R2;
         jump stg_ap_0_fast; // [R1]
 }]

Consider a function where application of a function ( of unknown arity ) occurs.

Haskell:

compose f g x = f (g x)

Cmm:

[section "data" {
     compose_closure:
         const compose_info;
 },
 compose_info()
         { label: compose_info
           rep:HeapRep static { Fun {arity: 3 fun_type: ArgSpec 20} }
         }
     ch9:
         Hp = Hp + 32;
         if (Hp > HpLim) goto chd;
         I64[Hp - 24] = stg_ap_2_upd_info;
         I64[Hp - 8] = R3;
         I64[Hp + 0] = R4;
         R1 = R2;
         R2 = Hp - 24;
         jump stg_ap_p_fast; // [R1, R2]
     che:
         R1 = compose_closure;
         jump stg_gc_fun; // [R1, R4, R3, R2]
     chd:
         HpAlloc = 32;
         goto che;
 }]

Consider a function which branches using pattern matching:

Haskell:

match :: Either a a -> a
match x = case x of
  Left a -> a
  Right b -> b

Cmm:

[section "data" {
     match_closure:
         const match_info;
 },
 sio_ret()
         { label: sio_info
           rep:StackRep []
         }
     ciL:
         _ciM::I64 = R1 & 7;
         if (_ciM::I64 >= 2) goto ciN;
         R1 = I64[R1 + 7];
         Sp = Sp + 8;
         jump stg_ap_0_fast; // [R1]
     ciN:
         R1 = I64[R1 + 6];
         Sp = Sp + 8;
         jump stg_ap_0_fast; // [R1]
 },
 match_info()
         { label: match_info
           rep:HeapRep static { Fun {arity: 1 fun_type: ArgSpec 5} }
         }
     ciP:
         if (Sp - 8 < SpLim) goto ciR;
         R1 = R2;
         I64[Sp - 8] = sio_info;
         Sp = Sp - 8;
         if (R1 & 7 != 0) goto ciU;
         jump I64[R1]; // [R1]
     ciR:
         R1 = match_closure;
         jump stg_gc_fun; // [R1, R2]
     ciU: jump sio_info; // [R1]
 }]

Macros

Cmm itself uses many macros to stand for various constructs, many of which are defined in an external C header file. A short reference for the common types:

Cmm Description
C_ char
D_ double
F_ float
W_ word
P_ garbage collected pointer
I_ int
L_ long
FN_ function pointer (no arguments)
EF_ extern function pointer
I8 8-bit integer
I16 16-bit integer
I32 32-bit integer
I64 64-bit integer

Inside of Cmm logic there are several functions which are commonly invoked:

stg_init_finish
{
  jump StgReturn;
}

stg_init
{
  W_ next;
  Sp = W_[BaseReg + OFFSET_StgRegTable_rSp];
  next = W_[Sp];
  Sp_adj(1);
  jump next;
}
#define SIZEOF_W  8 /* or 4 depending on platform */
#define WDS(n) ((n)*SIZEOF_W)
#define Sp(n)  W_[Sp + WDS(n)]
#define Hp(n)  W_[Hp + WDS(n)]
#define Sp_adj(n) Sp = Sp + WDS(n)
#define Hp_adj(n) Hp = Hp + WDS(n)

Many of the predefined closures (stg_ap_p_fast, etc) are themselves mechanically generated and more or less share the same form ( a giant switch statement on closure type, update frame, stack adjustment). Inside of GHC is a file named GenApply.hs that generates most of these functions. For example the output for stg_ap_p_fast.

stg_ap_p_fast
{   W_ info;
    W_ arity;
    if (GETTAG(R1)==1) {
        Sp_adj(0);
        jump %GET_ENTRY(R1-1) [R1,R2];
    }
    if (Sp - WDS(2) < SpLim) {
        Sp_adj(-2);
        W_[Sp+WDS(1)] = R2;
        Sp(0) = stg_ap_p_info;
        jump __stg_gc_enter_1 [R1];
    }
    R1 = UNTAG(R1);
    info = %GET_STD_INFO(R1);
    switch [INVALID_OBJECT .. N_CLOSURE_TYPES] (TO_W_(%INFO_TYPE(info))) {
        case FUN,
             FUN_1_0,
             FUN_0_1,
             FUN_2_0,
             FUN_1_1,
             FUN_0_2,
             FUN_STATIC: {
            arity = TO_W_(StgFunInfoExtra_arity(%GET_FUN_INFO(R1)));
            ASSERT(arity > 0);
            if (arity == 1) {
                Sp_adj(0);
                R1 = R1 + 1;
                jump %GET_ENTRY(UNTAG(R1)) [R1,R2];
            } else {
                Sp_adj(-2);
                W_[Sp+WDS(1)] = R2;
                if (arity < 8) {
                  R1 = R1 + arity;
                }
                BUILD_PAP(1,1,stg_ap_p_info,FUN);
            }
        }
        default: {
            Sp_adj(-2);
            W_[Sp+WDS(1)] = R2;
            jump RET_LBL(stg_ap_p) [];
        }
    }
}

Inline CMM

Handwritten Cmm can be included in a module manually by first compiling it through GHC into an object and then using a special FFI invocation.

#include "Cmm.h"

factorial {
  entry:
      W_ n  ;
      W_ acc;
      n = R1 ;
      acc = n ;
      n = n - 1 ;
    
  for:
      if (n <= 0 ) {
          return(acc);
      } else {
          acc = acc * n  ;
          n = n - 1 ;
          goto for ;
      }
      return(0);
}
-- ghc -c factorial.cmm -o factorial.o
-- ghc factorial.o Example.hs -o Example

{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnliftedFFITypes #-}
{-# LANGUAGE GHCForeignImportPrim #-}
{-# LANGUAGE ForeignFunctionInterface #-}

module Main where

import GHC.Prim
import GHC.Word

foreign import prim "factorial" factorial_cmm  :: Word# -> Word#

factorial :: Word64 -> Word64
factorial (W64# n) =  W64# (factorial_cmm n)

main :: IO ()
main = print (factorial 5)

Optimisation

GHC uses a suite of assembly optimisations to generate more optimal code.

Tables Next to Code

GHC will place the info table for a toplevel closure directly next to the entry-code for the objects in memory such that the fields from the info table can be accessed by pointer arithmetic on the function pointer to the code itself. Not performing this optimization would involve chasing through one more pointer to get to the info table. Given how often info-tables are accessed using the tables-next-to-code optimization results in a tractable speedup.

Pointer Tagging

Depending on the type of the closure involved, GHC will utilize the last few bits in a pointer to the closure to store information that can be read off from the bits of pointer itself before jumping into or access the info tables. For thunks this can be information like whether it is evaluated to WHNF or not, for constructors it contains the constructor tag (if it fits) to avoid an info table lookup.

Depending on the architecture the tag bits are either the last 2 or 3 bits of a pointer.

// 32 bit arch
TAG_BITS = 2

// 64-bit arch
TAG_BITS = 3

These occur in Cmm most frequently via the following macro definitions:

#define TAG_MASK ((1 << TAG_BITS) - 1)
#define UNTAG(p) (p & ~TAG_MASK)
#define GETTAG(p) (p & TAG_MASK)

So for instance in many of the precompiled functions, there will be a test for whether the active closure R1 is already evaluated.

if (GETTAG(R1)==1) {
    Sp_adj(0);
    jump %GET_ENTRY(R1-1) [R1,R2];
}

Interface Files

During compilation GHC will produce interface files for each module that are the binary encoding of specific symbols (functions, typeclasses, etc) exported by that module as well as any package dependencies it itself depends on. This is effectively the serialized form of the ModGuts structure used internally in the compiler. The internal structure of this file can be dumped using the --show-iface flag. The precise structure changes between versions of GHC.

$ ghc --show-iface let.hi
Magic: Wanted 33214052,
       got    33214052
Version: Wanted [7, 0, 8, 4],
         got    [7, 0, 8, 4]
Way: Wanted [],
     got    []
interface main:Main 7084
  interface hash: 1991c3e0edf3e849aeb53783fb616df2
  ABI hash: 0b7173fb01d2226a2e61df72371034ee
  export-list hash: 0f26147773230f50ea3b06fe20c9c66c
  orphan hash: 693e9af84d3dfcc71e640e005bdc5e2e
  flag hash: 9b3dfba8e3209c5b5c132a214b6b9bd3
  used TH splices: False
  where
exports:
  Main.main
module dependencies:
package dependencies: base* ghc-prim integer-gmp
orphans: base:GHC.Base base:GHC.Float base:GHC.Real
family instance modules: base:Data.Either base:Data.Monoid
                         base:Data.Type.Equality base:GHC.Generics
import  -/  base:GHC.Num 5e7786970581cacc802bf850d458a30b
import  -/  base:Prelude 74043f272d60acec1777d3461cfe5ef4
import  -/  base:System.IO cadd0efb01c47ddd8f52d750739fdbdf
import  -/  ghc-prim:GHC.Types dcba736fa3dfba12d307ab18354845d2
4cfa03293a8356d627c0c5fec26936e2
  main :: GHC.Types.IO ()
vectorised variables:
vectorised tycons:
vectorised reused tycons:
parallel variables:
parallel tycons:
trusted: safe-inferred
require own pkg trusted: False

Runtime System

The GHC runtime system is a massive part of the compiler. It comes in at around 70,000 lines of C and Cmm. There is simply no way to explain most of what occurs in the runtime succinctly. There is more than three decades worth of work that has gone into making this system and it is quite advanced. Instead lets look at the basic structure and some core modules.

The golden source of truth for all GHC internals is the GHC Wiki Commentary written by the compiler maintainers:

https://gitlab.haskell.org/ghc/ghc/wikis/commentary

Inside the GHC source tree the runtime system spans multiple modules. The bulk of the runtime logic is stored across the includes, utils and rts folders.

ghc-8.8.2
├── compiler
│   └── prelude
       └── primops.txt.pp # Definitions of primops
├── compiler
├── includes
│   ├── rts                # Public interface for RTS
│   └── stg                # Definitions for STG langauge
├── utils
│   ├── genapply           # Generates Cmm closure application boilerplate
│   ├── genprimopcode      # Generates Primop builtin operations for GHC
│   └── deriveConstants    # Machine specific information about register and sizes
└── rts
    ├── hooks
    ├── linker
    ├── posix
    ├── sm
    └── win32

The toplevel for the runtime interface is exposed through six key header files found in the /includes folder.

includes
├── Cmm.h             # Defines Cmm types and macros
├── HsFFI.h           # Defines mapping between STG types and Haskell types, and FFI functions
├── MachDeps.h        # Defines types of of machine integer types and sizes
├── Rts.h             # Declares everything that the GHC RTS exposes externally
├── RtsAPI.h          # API for invoking Haskell functions via the RTS
└── STG.h             # Toplevel import for all STG types, control flow operations and memory layout

The stg folder contains many of the macros used in the evaluation of STG as well as the memory layout and mappings from to STG to machine types.

include/stg
├── DLL.h                 # Support for Windows DLLs
├── HaskellMachRegs.h     # Registers used in STG code
├── MachRegs.h            # Registers used in STG code
├── MiscClosures.h        # Type definitions for layout of STG closures
├── Prim.h                # Declarations of primops
├── Regs.h                # Registers for STG virtual machine
├── RtsMachRegs.h         # Registers for STG virtual machine
├── SMP.h                 # Declarations for multicore memory operations
├── Ticky.h               # Profiling tools
└── Types.h               # C Declarations of types used in STG

The storage folder contains format definitions define that define the memory layout of closures, InfoTables, sparks, etc as they are represented on the heap.

include/rts/storage
├── Block.h               # Block structure for the storage manager
├── ClosureMacros.h       # Macros for manipulating info tables of closures
├── Closures.h            # Type definitions for closures
├── ClosureTypes.h        # Definitions for closure metadata (arity, etc)
├── FunTypes.h            # Definitions of function argument types
├── GC.h                  # Type definitions for GC blocks, nursery, generations
├── Heap.h                # Introsepction for GHC heap
├── InfoTables.h          # Type definitinos for function info tables
├── MBlock.h              # Introspection for determining if points are on the GHC heap
└── TSO.h                 # Thread state objects

Inside the utils folder of the GHC source tree are several utilities that generate Cmm modules that GHC is compiled against. These are boilerplate modules that define the Cmm macros in terms of the Haskell datatypes defined in the Stg definitions in the compiler.

For genprimop, the primops are generated from a custom domain specific langauge specified in primops.txt.pp which defines the primops, their arity, commutative and associvaity properties and the machine types they operate over. An example for integer addition for (+#) looks like:

primtype Int#

primop   IntAddOp    "+#"    Dyadic
   Int# -> Int# -> Int#
   with commutable = True
        fixity = infixl 6

primop   IntSubOp    "-#"    Dyadic   Int# -> Int# -> Int#
   with fixity = infixl 6

For genapply this generates all the Cmm definitions in Apply.cmm for manipulating the stack when evaluating a closure. For example a function of arity 2 (ap) is applied to 2 pointer arguments (pp) we would jump to stg_ap_stk_pp definition.

stg_ap_stk_pp
{   R3 = W_[Sp+WDS(1)];
    R2 = W_[Sp+WDS(0)];
    Sp_adj(2);
    jump %GET_ENTRY(UNTAG(R1)) [R1,R2,R3];
}

The conventions for these single letters is described by the following datatype in Main.hs of genapply:

data ArgRep
  = N   -- non-ptr
  | P   -- ptr
  | V   -- void
  | F   -- float
  | D   -- double
  | L   -- long (64-bit)
  | V16 -- 16-byte (128-bit) vectors
  | V32 -- 32-byte (256-bit) vectors
  | V64 -- 64-byte (512-bit) vectors

The include/rts folder itself contains all the public header files for all aspects of the runtime. Most of thes are included in Rts.h toplevel import.

include/rts
├── Adjustor.h            # Dynamically allocated code for Haskell closures to be viewed as C function pointers.
├── BlockSignals.h        # RTS signal handling
├── Bytecodes.h           # Bytecode definitions for GHCi
├── Config.h              # Runtime system settings (debug, profiling)
├── Constants.h           # Global constants
├── EventLogFormat.h      # Event log for profiling
├── EventLogWriter.h      # Event log for profiling
├── FileLock.h            # Filesystem file locking
├── Flags.h               # +RTS flag settings
├── GetTime.h             # System clock timers
├── Globals.h             # Data.Typeale and GHC.Conc storage utilities
├── Hpc.h                 # Haskell program coverage hooks
├── IOManager.h           # IO event loop
├── Libdw.h               # DWARF debugging
├── LibdwPool.h           # DWARF debugging
├── Linker.h              # Object linker
├── Main.h                # Defines hs_main entry point invoked by Main.main
├── Messages.h            # Runtime error logging
├── OSThreads.h           # Abstraction over operating system thread libraries
├── Parallel.h            # Defines newSpark primitive
├── PrimFloat.h           # Primitive floating point operations
├── Profiling.h           # Cost center profiling
├── Signals.h             # RTS signal handling
├── SpinLock.h            # Abstraction over system spin locks
├── StableName.h          # Interface for GHC.StableName objects
├── StablePtr.h           # Interface for GHC.Stable pointers which arent collected by GC
├── StaticPtrTable.h      # Declarations for Static Pointer Table
├── Threads.h             # Interface for thread scheduler
├── Ticky.h               # Profiling counter types
├── Time.h                # Time resolution and datatype settings for the runtime
├── Timer.h               # Timer for profiling
├── TTY.h                 # POSIX tty interface
├── Types.h               # RTS types, defines StgClosure StgInfoTable and StgTSO
└── Utils.h               # Misc utilities

The runtime system folder itself contains several modules which are written in Cmm.

rts
├── Apply.cmm              # Application of closures
├── Compact.cmm            # Compact regions
├── Exception.cmm          # Async exception primitives
├── HeapStackCheck.cmm     # Heap and Stack failure checks
├── PrimOps.cmm            # Array, MVar, TVar, STM primitives
├── StgMiscClosures.cmm    # Entry code for closure types
├── StgStartup.cmm         # Code for starting, stopping and restarting threads
├── StgStdThunks.cmm       # Introspection and field selection of thunks
└── Updates.cmm            # Code up to update thunks, BlackHole handling.

The core library for the garbage collector used in the runtime is stored in the sm subfolder of rts and contains several implementations of the garbage collectors that Haskell programs can be compiled with.

rts/sm
├── BlockAlloc.c           # GC block allocator
├── CNF.c                  # Compact normal forms, non-GCd structures
├── Compact.c              # Compacting garbage collector
├── Evac.c                 # Generational garbage collector:
├── GC.c                   # Generational garbage collector
├── MBlock.c               # Architecture-dependent functions for allocations
├── NonMoving.c            # Low-latency garbage collector
├── NonMovingMark.c        # Low-latency garbage collector mark algorithm
├── Sanity.c               # Sanity checking for heap and stack
├── Scav.c                 # Scavenger functions for generational GC
├── Storage.c              # GC storage manager
└── Sweep.c                # Mark and sweep algorithm for block allocator

The source for the whole runtime in rts contains 50 or so modules. The core units of logic are described briefly below.

rts
├── Arena.c                     # Arena datatypes for garbage collector
├── ClosureFlags.c              # Definitions for types of closures
├── Disassembler.c              # Bytecode interpreter for GHCi
├── Globals.c                   # Runtime system global variables
├── Hash.c                      # GHCs hash table implementation
├── Heap.c                      # GHC heap definition
├── HsFFI.c                     # Foreign function interface
├── Interpreter.c               # Bytecode interpreter for GHCi
├── Linker.c                    # Object code linker
├── Printer.c                   # Heap value pretty printer
├── Profiling.c                 # Entry point for profiling functions
├── RtsAPI.c                    # API for invoking Haskell functions via the RTS
├── RtsMain.c                   # Entry point for runtime system
├── RtsStartup.c                # Main function for a standalone Haskell program.
├── RtsSymbolInfo.c             # RTS symbol table handling
├── RtsSymbols.c                # RTS symbol definitions
├── Schedule.c                  # Thread scheduler
├── Sparks.c                    # Spark pools for parallel runtime
├── StgCRun.c                   # Entry point for running STG functions from C
├── STM.c                       # Software transactional memory 
├── Task.c                      # Task managerw for parallel runtime
├── Threads.c                   # Core thread types and spawning functions
├── TopHandler.c                # RTS main thread handler
├── Weak.c                      # Handling of weak pointers and finalisation logic
└── WSDeque.c                   # Work-stealing deque data structure for parallel runtime

The runtime system itself also has three different modes/ways of operation.

The specific flags can be checked by passing +RTS --info to a compiled binary.

 [("GHC RTS", "YES")
 ,("GHC version", "8.6.5")
 ,("RTS way", "rts_v")
 ,("Build platform", "x86_64-unknown-linux")
 ,("Build architecture", "x86_64")
 ,("Build OS", "linux")
 ,("Build vendor", "unknown")
 ,("Host platform", "x86_64-unknown-linux")
 ,("Host architecture", "x86_64")
 ,("Host OS", "linux")
 ,("Host vendor", "unknown")
 ,("Target platform", "x86_64-unknown-linux")
 ,("Target architecture", "x86_64")
 ,("Target OS", "linux")
 ,("Target vendor", "unknown")
 ,("Word size", "64")
 ,("Compiler unregisterised", "NO")
 ,("Tables next to code", "YES")
 ]

The state of the runtime can also be queried at runtime for statistics about the heap, garbage collector and wall time. The getRTSStats generates two datatypes with all the queryable information contained in RTSStats and GCDetails.

import GHC.Stats
getRTSStats :: IO RTSStats

Profiling

Criterion

Criterion is a statistically aware benchmarking tool. It exposes a library which allows us to benchmark individual functions over and over and test the distribution of timings for aberrant beahvior and stability. These kind of tests are quite common to include in libraries which need to test that the introduction of new logic doesn’t result in performance regressions.

Criterion operates largely with the following four functions.

whnf :: (a -> b) -> a -> Pure
nf :: NFData b => (a -> b) -> a -> Pure
nfIO :: NFData a => IO a -> IO ()
bench :: Benchmarkable b => String -> b -> Benchmark

The whnf function evaluates a function applied to an argument a to weak head normal form, while nf evaluates a function applied to an argument a deeply to normal form. See Laziness.

The bench function samples a function over and over according to a configuration to develop a statistical distribution of its runtime.

import Criterion.Main

-- Naive recursion for fibonacci numbers.
fib1 :: Int -> Int
fib1 0 = 0
fib1 1 = 1
fib1 n = fib1 (n -1) + fib1 (n -2)

-- Use the De Moivre closed form for fibonacci numbers.
fib2 :: Int -> Int
fib2 x = truncate $ (1 / sqrt 5) * (phi ^ x - psi ^ x)
  where
    phi = (1 + sqrt 5) / 2
    psi = (1 - sqrt 5) / 2

suite :: [Benchmark]
suite =
  [ bgroup
      "naive"
      [ bench "fib 10" $ whnf fib1 5,
        bench "fib 20" $ whnf fib1 10
      ],
    bgroup
      "de moivre"
      [ bench "fib 10" $ whnf fib2 5,
        bench "fib 20" $ whnf fib2 10
      ]
  ]

main :: IO ()
main = defaultMain suite

These criterion reports can be generated out to either CSV or to an HTML file output with plots of the data.

$ runhaskell criterion.hs
warming up
estimating clock resolution...
mean is 2.349801 us (320001 iterations)
found 1788 outliers among 319999 samples (0.6%)
  1373 (0.4%) high severe
estimating cost of a clock call...
mean is 65.52118 ns (23 iterations)
found 1 outliers among 23 samples (4.3%)
  1 (4.3%) high severe

benchmarking de moivre/fib 20
mean: 8.082639 us, lb 8.018560 us, ub 8.350159 us, ci 0.950
std dev: 595.2161 ns, lb 77.46251 ns, ub 1.408784 us, ci 0.950
found 8 outliers among 100 samples (8.0%)
  4 (4.0%) high mild
  4 (4.0%) high severe
variance introduced by outliers: 67.628%
variance is severely inflated by outliers

To generate an HTML page containing the benchmark results plotted

$ ghc -O2 --make criterion.hs
$ ./criterion -o bench.html

EKG

EKG is a monitoring tool that can monitor various aspect of GHC’s runtime alongside an active process. The interface for the output is viewable within a browser interface. The monitoring process is forked off (in a system thread) from the main process.

{-# Language OverloadedStrings #-}

import Control.Monad
import System.Remote.Monitoring

main :: IO ()
main = do
  ekg <- forkServer "localhost" 8000
  putStrLn "Started server on http://localhost:8000"
  forever $ getLine >>= putStrLn

RTS Profiling

The GHC runtime system can be asked to dump information about allocations and percentage of wall time spent in various portions of the runtime system.

$ ./program +RTS -s

       1,939,784 bytes allocated in the heap
          11,160 bytes copied during GC
          44,416 bytes maximum residency (2 sample(s))
          21,120 bytes maximum slop
               1 MB total memory in use (0 MB lost due to fragmentation)

                                    Tot time (elapsed)  Avg pause  Max pause
  Gen  0         2 colls,     0 par    0.00s    0.00s     0.0000s    0.0000s
  Gen  1         2 colls,     0 par    0.00s    0.00s     0.0002s    0.0003s

  INIT    time    0.00s  (  0.00s elapsed)
  MUT     time    0.00s  (  0.01s elapsed)
  GC      time    0.00s  (  0.00s elapsed)
  EXIT    time    0.00s  (  0.00s elapsed)
  Total   time    0.01s  (  0.01s elapsed)

  %GC     time       5.0%  (7.1% elapsed)

  Alloc rate    398,112,898 bytes per MUT second

  Productivity  91.4% of total user, 128.8% of total elapsed

Productivity indicates the amount of time spent during execution compared to the time spent garbage collecting. Well tuned CPU bound programs are often in the 90-99% range of productivity range.

In addition individual function profiling information can be generated by compiling the program with -prof flag. The resulting information is outputted to a .prof file of the same name as the module. This is useful for tracking down hotspots in the program.

$ ghc -O2 program.hs -prof -auto-all
$ ./program +RTS -p
$ cat program.prof
        Mon Oct 27 23:00 2014 Time and Allocation Profiling Report  (Final)

           program +RTS -p -RTS

        total time  =        0.01 secs   (7 ticks @ 1000 us, 1 processor)
        total alloc =   1,937,336 bytes  (excludes profiling overheads)

COST CENTRE MODULE           %time %alloc

CAF         Main             100.0   97.2
CAF         GHC.IO.Handle.FD   0.0    1.8


                                                      individual     inherited
COST CENTRE MODULE                  no.     entries  %time %alloc   %time %alloc

MAIN        MAIN                     42           0    0.0    0.7   100.0  100.0
 CAF        Main                     83           0  100.0   97.2   100.0   97.2
 CAF        GHC.IO.Encoding          78           0    0.0    0.1     0.0    0.1
 CAF        GHC.IO.Handle.FD         77           0    0.0    1.8     0.0    1.8
 CAF        GHC.Conc.Signal          74           0    0.0    0.0     0.0    0.0
 CAF        GHC.IO.Encoding.Iconv    69           0    0.0    0.0     0.0    0.0
 CAF        GHC.Show                 60           0    0.0    0.0     0.0    0.0

Compilers

Haskell is widely regarded as being a best in class for the construction of compilers and there are many examples of programming languages that were bootstrapped on Haskell.

Compiler development largely consists of a process of transforming one graph representation of a program or abstract syntax tree into simpler graph representations while preserving the semantics of the languages. Many of these operations can be written quite concisely using Haskell’s pattern matching machinery.

Haskell itself also has a rich academic tradition and an enormous number of academic papers will use Haskell as the implementation language used to describe a typechecker, parser or other novel compiler idea.

In addition the Hackage ecosystem has a wide variety of modules that many individuals have abstracted out of their own compilers into reusable components. These are broadly divided into several categories:

Unbound

Several libraries exist to mechanize the process of writing name capture and substitution, since it is largely mechanical. Probably the most robust is the unbound library. For example we can implement the infer function for a small Hindley-Milner system over a simple typed lambda calculus without having to write the name capture and substitution mechanics ourselves.

{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}

module Infer where

import Data.String
import Data.Map (Map)
import Control.Monad.Error
import qualified Data.Map as Map

import qualified Unbound.LocallyNameless as NL
import Unbound.LocallyNameless hiding (Subst, compose)

data Type
  = TVar (Name Type)
  | TArr Type Type
  deriving (Show)

data Expr
  = Var (Name Expr)
  | Lam (Bind (Name Expr) Expr)
  | App Expr Expr
  | Let (Bind (Name Expr) Expr)
  deriving (Show)

$(derive [''Type, ''Expr])


instance IsString Expr where
    fromString = Var . fromString
instance IsString Type where
    fromString = TVar . fromString
instance IsString (Name Expr) where
    fromString = string2Name
instance IsString (Name Type) where
    fromString = string2Name

instance Eq Type where
    (==) = eqType

eqType :: Type -> Type -> Bool
eqType (TVar v1) (TVar v2) = v1 == v2
eqType _ _ = False

uvar :: String -> Expr
uvar x = Var (s2n x)

tvar :: String -> Type
tvar x = TVar (s2n x)

instance Alpha Type
instance Alpha Expr

instance NL.Subst Type Type where
  isvar (TVar v) = Just (SubstName v)
  isvar _ = Nothing

instance NL.Subst Expr Expr where
  isvar (Var v) = Just (SubstName v)
  isvar _ = Nothing

instance NL.Subst Expr Type where


data TypeError
  = UnboundVariable (Name Expr)
  | GenericTypeError
  deriving (Show)

instance Error TypeError where
  noMsg = GenericTypeError


type Env = Map (Name Expr) Type
type Constraint = (Type, Type)
type Infer = ErrorT TypeError FreshM

empty :: Env
empty = Map.empty

freshtv :: Infer Type
freshtv = do
  x <- fresh "_t"
  return $ TVar x

infer :: Env -> Expr -> Infer (Type, [Constraint])
infer env expr = case expr  of

  Lam b -> do
    (n,e) <- unbind b
    tv <- freshtv
    let env' = Map.insert n tv env
    (t, cs) <- infer env' e
    return (TArr tv t, cs)

  App e1 e2 -> do
     (t1, cs1) <- infer env e1
     (t2, cs2) <- infer env e2
     tv <- freshtv
     return (tv, (t1, TArr t2 tv) : cs1 ++ cs2)

  Var n -> do
     case Map.lookup n env of
        Nothing -> throwError $ UnboundVariable n
        Just t  -> return (t, [])

  Let b -> do
     (n, e) <- unbind b
     (tBody, csBody) <- infer env e
     let env' = Map.insert n tBody env
     (t, cs) <- infer env' e
     return (t, cs ++ csBody)

Unbound Generics

Recently unbound was ported to use GHC.Generics instead of Template Haskell. The API is effectively the same, so for example a simple lambda calculus could be written as:

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE ScopedTypeVariables #-}

module LC where

import Unbound.Generics.LocallyNameless
import Unbound.Generics.LocallyNameless.Internal.Fold (toListOf)

import GHC.Generics

import Data.Typeable (Typeable)
import Data.Set as S

import Control.Monad.Reader (Reader, runReader)

data Exp
  = Var (Name Exp)
  | Lam (Bind (Name Exp) Exp)
  | App Exp Exp
  deriving (Show, Generic, Typeable)

instance Alpha Exp

instance Subst Exp Exp where
  isvar (Var x) = Just (SubstName x)
  isvar _       = Nothing

fvSet :: (Alpha a, Typeable b) => a -> S.Set (Name b)
fvSet = S.fromList . toListOf fv

type M a = FreshM a

(=~) :: Exp -> Exp -> M Bool
e1 =~ e2 | e1 `aeq` e2 = return True
e1 =~ e2 = do
    e1' <- red e1
    e2' <- red e2
    if e1' `aeq` e1 && e2' `aeq` e2
      then return False
      else e1' =~ e2'

-- Reduction
red :: Exp -> M Exp
red (App e1 e2) = do
  e1' <- red e1
  e2' <- red e2
  case e1' of
    Lam bnd -> do
        (x, e1'') <- unbind bnd
        return $ subst x e2' e1''
    otherwise -> return $ App e1' e2'
red (Lam bnd) = do
   (x, e) <- unbind bnd
   e' <- red e
   case e of
     App e1 (Var y) | y == x && x `S.notMember` fvSet e1 -> return e1
     otherwise -> return (Lam (bind x e'))
red (Var x) = return $ (Var x)


x :: Name Exp
x = string2Name "x"

y :: Name Exp
y = string2Name "y"

z :: Name Exp
z = string2Name "z"

s :: Name Exp
s = string2Name "s"

lam :: Name Exp -> Exp -> Exp
lam x y = Lam (bind x y)

zero  = lam s (lam z (Var z))
one   = lam s (lam z (App (Var s) (Var z)))
two   = lam s (lam z (App (Var s) (App (Var s) (Var z))))
three = lam s (lam z (App (Var s) (App (Var s) (App (Var s) (Var z)))))

plus = lam x (lam y (lam s (lam z (App (App (Var x) (Var s)) (App (App (Var y) (Var s)) (Var z))))))

true = lam x (lam y (Var x))
false = lam x (lam y (Var y))
if_ x y z = (App (App x y) z)

main :: IO ()
main = do
  print $ lam x (Var x) `aeq` lam y (Var y)
  print $ not (lam x (Var y) `aeq` lam x (Var x))
  print $ lam x (App (lam y (Var x)) (lam y (Var y))) =~ (lam y (Var y))
  print $ lam x (App (Var y) (Var x)) =~ Var y
  print $ if_ true (Var x) (Var y) =~ Var x
  print $ if_ false (Var x) (Var y) =~ Var y
  print $ App (App plus one) two =~ three

See:

Pretty Printers

Pretty is the first Wadler-Leijen style combinator library, it exposes a simple set of primitives to print Haskell datatypes to legacy strings programmatically. You probably don’t want to use this library but it inspired most of the ones that followed after. There are many many many pretty printing libraries for Haskell.

Wadler-Leijen Style

Modern

Specialised

These days it is best to avoid the pretty printer and use the standard prettyprinter library which subsumes most of the features of these previous libraries under one modern uniform API.

prettyprinter

Pretty printer is a printer combinator library which allows us to write typeclasses over datatypes to render them to strings with arbitrary formatting. These kind of libraries show up everywhere where the default Show instance is insufficient for rendering.

The base interface to these libraries is exposed as a Pretty class which monoidally composes a variety of documents together. The Monoid append operation simply concatenates two documents while a variety of higher level combinators add additional string elements into the language.

The Pretty class maps an arbitrary value into a Doc type which is annotated with the renderer.

data Doc ann

class Pretty a where
  pretty :: a -> Doc ann
  prettyList :: [a] -> Doc ann

The Doc type can then be rendered to any number of strings type means of a layout algorithm. The builtin methods are Compact, Smart and Pretty.

viaShow :: Show a => a -> Doc ann
layoutPretty :: LayoutOptions -> Doc ann -> SimpleDocStream ann
renderStrict :: SimpleDocStream ann -> Text
putDoc :: Doc ann -> IO ()

The common combinators are shown below,

Combinator Description
<> Concatenation
<+> Spaced concatenation
nest Nested a document with whitespace
group Lays out on a line by removing line breaks
align Lays out with the nesting level at the current column
hang Lays out with the nesting level relative to the first line
indent Increases indentation by a given count
list Lays out a given list with braces and commas.
tupled Lays out a given list with parens and commas.
hsep Concatenates list of docs horizontally with a separator
hcat Concatenates list of docs horizontally
vcat Concatenates list of docs vertically
puncutate Appends a given doc to all elements of a list of docs
parens Surrounds with parentheses
dquotes Surrounds with double quotes

For example the common pretty printed form of the lambda calculus k combinator is:

\f g x . (f (g x))

The prettyprinter library can be used to pretty print nested data structures in a more human readable form for any type that implements Show. For example a dump of the structure for the AST of SK combinator with ppShow.

App
  (Lam
     "f" (Lam "g" (Lam "x" (App (Var "f") (App (Var "g") (Var "x"))))))
  (Lam "x" (Lam "y" (Var "x")))

A full example of pretty printing the lambda calculus is shown below. This uses a custom Pretty class to pass an integral value which indicates the depth of the lambda expression. Alternatively the builtin Pretty class could be used for simpler datatypes.

{-# LANGUAGE FlexibleInstances #-}

import Data.Text.Prettyprint.Doc hiding (Pretty)
import Data.Text.Prettyprint.Doc.Render.Terminal

parensIf :: Bool -> Doc a -> Doc a
parensIf True = parens
parensIf False = id

type Name = String

data Expr
  = Var String
  | Lit Ground
  | App Expr Expr
  | Lam Name Expr
  deriving (Eq, Show)

data Ground
  = LInt Int
  | LBool Bool
  deriving (Show, Eq, Ord)

class Pretty p where
  ppr :: Int -> p -> Doc AnsiStyle

instance Pretty String where
  ppr _ = pretty

instance Pretty (Doc AnsiStyle) where
  ppr _ = id

instance Pretty Expr where
  ppr _ (Var x) = pretty x
  ppr _ (Lit (LInt a)) = pretty (show a)
  ppr _ (Lit (LBool b)) = pretty (show b)
  ppr p e@(App _ _) =
    let (f, xs) = viewApp e
     in let args = sep $ map (ppr (p + 1)) xs
         in parensIf (p > 0) $ ppr p f <+> args
  ppr p e@(Lam _ _) =
    let body = ppr (p + 1) (viewBody e)
     in let vars = map (ppr 0) (viewVars e)
         in parensIf (p > 0) $ pretty '\\' <> hsep vars <+> pretty "." <+> body

viewVars :: Expr -> [Name]
viewVars (Lam n a) = n : viewVars a
viewVars _ = []

viewBody :: Expr -> Expr
viewBody (Lam _ a) = viewBody a
viewBody x = x

viewApp :: Expr -> (Expr, [Expr])
viewApp (App e1 e2) = go e1 [e2]
  where
    go (App a b) xs = go a (b : xs)
    go f xs = (f, xs)

ppexpr :: Expr -> IO ()
ppexpr = render . ppr 0

render :: Pretty a => a -> IO ()
render a = putDoc (ppr 0 a)

s , k, example :: Expr
s = Lam "f" (Lam "g" (Lam "x" (App (Var "f") (App (Var "g") (Var "x")))))
k = Lam "x" (Lam "y" (Var "x"))
example = App s k

main :: IO ()
main = render s

pretty-simple

pretty-simple is a Haskell library that renders Show instances in a prettier way. It exposes functions which are drop in replacements for show and print.

pPrint :: (MonadIO m, Show a) => a -> m ()
pShow :: Show a => a -> Text
pPrintNoColor :: (MonadIO m, Show a) => a -> m ()

A simple example is shown below.

import Text.Pretty.Simple

main :: IO ()
main = do
  pPrint [1 .. 25]
  pPrint [Just (1, "hello")]

Pretty-simple can be used as the default GHCi printer as shown in the .ghci.conf section.

Haskeline

Haskeline is a Haskell library exposing cross-platform readline. It provides a monad which can take user input from the command line and allow the user to edit and go back forth on a line of input as well simple tab completion.

data InputT m a

runInputT :: Settings IO -> InputT IO a -> IO a
getInputLine :: String -> InputT IO (Maybe String)
outputStrLn :: MonadIO m => String -> InputT m ()

A simple example of usage is shown below:

import Control.Monad.Trans
import System.Console.Haskeline

type Repl a = InputT IO a

process :: String -> IO ()
process = putStrLn

repl :: Repl ()
repl = do
  minput <- getInputLine "Repl> "
  case minput of
    Nothing -> outputStrLn "Goodbye."
    Just input -> (liftIO $ process input) >> repl

main :: IO ()
main = runInputT defaultSettings repl

Repline

Certain sets of tasks in building command line REPL interfaces are so common that is becomes useful to abstract them out into a library. While haskeline provides a sensible lower-level API for interfacing with GNU readline, it is somewhat tedious to implement tab completion logic and common command logic over and over. To that end Repline assists in building interactive shells that resemble GHCi’s default behavior.

module Main where

import Control.Monad.Trans
import Data.List (isPrefixOf)
import System.Console.Repline
import System.Process (callCommand)

type Repl a = HaskelineT IO a

-- Evaluation : handle each line user inputs
cmd :: String -> Repl ()
cmd input = liftIO $ print input

-- Tab Completion: return a completion for partial words entered
completer :: Monad m => WordCompleter m
completer n = do
  let names = ["kirk", "spock", "mccoy"]
  return $ filter (isPrefixOf n) names

-- Commands
help :: [String] -> Repl ()
help args = liftIO $ print $ "Help: " ++ show args

say :: [String] -> Repl ()
say args = do
  _ <- liftIO $ callCommand $ "cowsay" ++ " " ++ (unwords args)
  return ()

options :: [(String, [String] -> Repl ())]
options =
  [ ("help", help), -- :help
    ("say", say) -- :say
  ]

ini :: Repl ()
ini = liftIO $ putStrLn "Welcome!"

repl :: IO ()
repl = evalRepl (pure ">>> ") cmd options Nothing (Word completer) ini

main :: IO ()
main = repl

Trying it out. (<TAB> indicates a user keypress )

$ cabal run simple
Welcome!
>>> <TAB>
kirk spock mccoy

>>> k<TAB>
kirk

>>> spam
"spam"

>>> :say Hello Haskell
 _______________
< Hello Haskell >
 ---------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||

See:

LLVM

Haskell has a rich set of LLVM bindings that can generate LLVM and JIT dynamic code from inside of the Haskell runtime. This is especially useful for building custom programming languages and compilers which need native performance. The llvm-hs library is the de-facto standard for compiler construction in Haskell.

We can link effectively to the LLVM bindings which provide an efficient JIT which can generate fast code from runtime. These can serve as the backend to an interpreter, generating fast SIMD operations for linear algebra, or compiling dataflow representations of neural networks into code as fast as C from dynamic descriptions of logic in Haskell.

The llvm-hs library is split across two modules:

The llvm-hs bindings allow us to construct LLVM abstract syntax tree by manipulating a variety of Haskell datatypes. These datatypes all can be serialised to the C++ bindings to construct the LLVM module’s syntax tree.

import Control.Monad.Except
import Data.ByteString.Char8 as BS
import LLVM.AST
import qualified LLVM.AST as AST
import LLVM.AST.Global
import LLVM.Context
import LLVM.Module

int :: Type
int = IntegerType 32

defAdd :: Definition
defAdd =
  GlobalDefinition
    functionDefaults
      { name = Name "add",
        parameters =
          ( [ Parameter int (Name "a") [],
              Parameter int (Name "b") []
            ],
            False
          ),
        returnType = int,
        basicBlocks = [body]
      }
  where
    body =
      BasicBlock
        (Name "entry")
        [ Name "result"
            := Add
              False -- no signed wrap
              False -- no unsigned wrap
              (LocalReference int (Name "a"))
              (LocalReference int (Name "b"))
              []
        ]
        (Do $ Ret (Just (LocalReference int (Name "result"))) [])

module_ :: AST.Module
module_ =
  defaultModule
    { moduleName = "basic",
      moduleDefinitions = [defAdd]
    }

toLLVM :: AST.Module -> IO ()
toLLVM mod = withContext $ \ctx -> do
  llvm <- withModuleFromAST ctx mod moduleLLVMAssembly
  BS.putStrLn llvm

main :: IO ()
main = toLLVM module_

This will generate the following LLVM module which can be pretty printed out:

; ModuleID = 'basic'
source_filename = "<string>"

define i32 @add(i32 %a, i32 %b) {
entry:
  %result = add i32 %a, %b
  ret i32 %result
}

An alternative interface uses an IRBuilder monad which interactively constructs up the LLVM AST using monadic combinators.

{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RecursiveDo #-}

module Main where

import Data.Text.Lazy.IO as T
import LLVM.AST hiding (function)
import qualified LLVM.AST.Constant as C
import qualified LLVM.AST.Float as F
import qualified LLVM.AST.IntegerPredicate as P
import LLVM.AST.Type as AST
import LLVM.IRBuilder.Instruction
import LLVM.IRBuilder.Module
import LLVM.IRBuilder.Monad

simple :: Module
simple = buildModule "exampleModule" $ mdo
  function "f" [(AST.i32, "a")] AST.i32 $ \[a] -> mdo
    _entry <- block `named` "entry"
    cond <- icmp P.EQ a (ConstantOperand (C.Int 32 0))
    condBr cond ifThen ifElse
    ifThen <- block
    trVal <- add a (ConstantOperand (C.Int 32 0))
    br ifExit
    ifElse <- block `named` "if.else"
    flVal <- add a (ConstantOperand (C.Int 32 0))
    br ifExit
    ifExit <- block `named` "if.exit"
    r <- phi [(trVal, ifThen), (flVal, ifElse)]
    ret r
  function "plus" [(AST.i32, "x"), (AST.i32, "y")] AST.i32 $ \[x, y] -> do
    _entry <- block `named` "entry2"
    r <- add x y
    ret r

main :: IO ()
main = print simple

See:

Template Haskell

Metaprogramming

Template Haskell is a very powerful set of abstractions, some might say too powerful. It effectively allows us to run arbitrary code at compile-time to generate other Haskell code. You can some absolutely crazy things, like going off and reading from the filesystem or doing network calls that informs how your code compiles leading to non-deterministic builds.

While in some extreme cases TH is useful, some discretion is required when using this in production setting. TemplateHaskell can cause your build times to grow without bound, force you to manually sort all definitions your modules, and generally produce unmaintainable code. If you find yourself falling back on metaprogramming ask yourself, what in my abstractions has failed me such that my only option is to write code that writes code.

Consideration should be used before enabling TemplateHaskell. Consider an idiomatic solution first.

Quasiquotation

Quasiquotation allows us to express “quoted” blocks of syntax that need not necessarily be the syntax of the host language, but unlike just writing a giant string it is instead parsed into some AST datatype in the host language. Notably values from the host languages can be injected into the custom language via user-definable logic allowing information to flow between the two languages.

In practice quasiquotation can be used to implement custom domain specific languages or integrate with other general languages entirely via code-generation.

We’ve already seen how to write a Parsec parser, now let’s write a quasiquoter for it.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

module Quasiquote where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax
import Language.Haskell.TH.Quote

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

import Control.Monad.Identity

data Expr
  = Tr
  | Fl
  | Zero
  | Succ Expr
  | Pred Expr
  deriving (Eq, Show)

instance Lift Expr where
  lift Tr         = [| Tr |]
  lift Fl         = [| Tr |]
  lift Zero       = [| Zero |]
  lift (Succ a)   = [| Succ a |]
  lift (Pred a)   = [| Pred a |]

type Op = Ex.Operator String () Identity

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

prefixOp :: String -> (a -> a) -> Op a
prefixOp x f = Ex.Prefix (reservedOp x >> return f)

table :: [[Op Expr]]
table = [
    [ prefixOp "succ" Succ
    , prefixOp "pred" Pred
    ]
  ]

expr :: Parser Expr
expr = Ex.buildExpressionParser table factor

true, false, zero :: Parser Expr
true  = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero  = reservedOp "0" >> return Zero

factor :: Parser Expr
factor =
      true
  <|> false
  <|> zero
  <|> parens expr

contents :: Parser a -> Parser a
contents p = do
  Tok.whiteSpace lexer
  r <- p
  eof
  return r

toplevel :: Parser [Expr]
toplevel = semiSep expr

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s

parseToplevel :: String -> Either ParseError [Expr]
parseToplevel s = parse (contents toplevel) "<stdin>" s

calcExpr :: String -> Q Exp
calcExpr str = do
  filename <- loc_filename `fmap` location
  case parse (contents expr) filename str of
    Left err -> error (show err)
    Right tag -> [| tag |]

calc :: QuasiQuoter
calc = QuasiQuoter calcExpr err err err
  where err = error "Only defined for values"

Testing it out:

{-# LANGUAGE QuasiQuotes #-}

import Quasiquote

a :: Expr
a = [calc|true|]
-- Tr

b :: Expr
b = [calc|succ (succ 0)|]
-- Succ (Succ Zero)

c :: Expr
c = [calc|pred (succ 0)|]
-- Pred (Succ Zero)

One extremely important feature is the ability to preserve position information so that errors in the embedded language can be traced back to the line of the host syntax.

language-c-quote

Of course since we can provide an arbitrary parser for the quoted expression, one might consider embedding the AST of another language entirely. For example C or CUDA C.

hello :: String -> C.Func
hello msg = [cfun|

int main(int argc, const char *argv[])
{
    printf($msg);
    return 0;
}

|]

Evaluating this we get back an AST representation of the quoted C program which we can manipulate or print back out to textual C code using ppr function.

Func
  (DeclSpec [] [] (Tint Nothing))
  (Id "main")
  DeclRoot
  (Params
     [ Param (Just (Id "argc")) (DeclSpec [] [] (Tint Nothing)) DeclRoot
     , Param
         (Just (Id "argv"))
         (DeclSpec [] [ Tconst ] (Tchar Nothing))
         (Array [] NoArraySize (Ptr [] DeclRoot))
     ]
     False)
  [ BlockStm
      (Exp
         (Just
            (FnCall
               (Var (Id "printf"))
               [ Const (StringConst [ "\"Hello Haskell!\"" ] "Hello Haskell!")
               ])))
  , BlockStm (Return (Just (Const (IntConst "0" Signed 0))))
  ]

In this example we just spliced in the anti-quoted Haskell string in the printf statement, but we can pass many other values to and from the quoted expressions including identifiers, numbers, and other quoted expressions which implement the Lift type class.

GPU Kernels

For example now if we wanted programmatically generate the source for a CUDA kernel to run on a GPU we can switch over the CUDA C dialect to emit the C code.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import qualified Language.C.Quote.CUDA as Cuda
import qualified Language.C.Syntax as C
import Text.PrettyPrint.Mainland
import Text.PrettyPrint.Mainland.Class (Pretty (..))

cuda_fun :: String -> Int -> Float -> C.Func
cuda_fun fn n a =
  [Cuda.cfun|

__global__ void $id:fn (float *x, float *y) {
  int i = blockIdx.x*blockDim.x + threadIdx.x;
  if ( i<$n ) { y[i] = $a*x[i] + y[i]; }
}

|]

cuda_driver :: String -> Int -> C.Func
cuda_driver fn n =
  [Cuda.cfun|

void driver (float *x, float *y) {
  float *d_x, *d_y;

  cudaMalloc(&d_x, $n*sizeof(float));
  cudaMalloc(&d_y, $n*sizeof(float));

  cudaMemcpy(d_x, x, $n, cudaMemcpyHostToDevice);
  cudaMemcpy(d_y, y, $n, cudaMemcpyHostToDevice);

  $id:fn<<<($n+255)/256, 256>>>(d_x, d_y);

  cudaFree(d_x);
  cudaFree(d_y);
  return 0;
}

|]

makeKernel :: String -> Float -> Int -> [C.Func]
makeKernel fn a n =
  [ cuda_fun fn n a,
    cuda_driver fn n
  ]

main :: IO ()
main = do
  let ker = makeKernel "saxpy" 2 65536
  mapM_ (putDocLn . ppr) ker

Running this we generate:

__global__ void saxpy(float* x, float* y)
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;

    if (i < 65536) {
        y[i] = 2.0 * x[i] + y[i];
    }
}
int driver(float* x, float* y)
{
    float* d_x, * d_y;

    cudaMalloc(&d_x, 65536 * sizeof(float));
    cudaMalloc(&d_y, 65536 * sizeof(float));
    cudaMemcpy(d_x, x, 65536, cudaMemcpyHostToDevice);
    cudaMemcpy(d_y, y, 65536, cudaMemcpyHostToDevice);
    saxpy<<<(65536 + 255) / 256, 256>>>(d_x, d_y);
    return 0;
}

Pipe the resulting output through NVidia CUDA Compiler with nvcc -ptx -c to get the PTX associated with the outputted code.

Template Haskell

Of course the most useful case of quasiquotation is the ability to procedurally generate Haskell code itself from inside of Haskell. The template-haskell framework provides four entry points for the quotation to generate various types of Haskell declarations and expressions.

Type Quasiquoted Class
Q Exp [e| ... |] expression
Q Pat [p| ... |] pattern
Q Type [t| ... |] type
Q [Dec] [d| ... |] declaration
data QuasiQuoter = QuasiQuoter
  { quoteExp  :: String -> Q Exp
  , quotePat  :: String -> Q Pat
  , quoteType :: String -> Q Type
  , quoteDec  :: String -> Q [Dec]
  }

The logic evaluating, splicing, and introspecting compile-time values is embedded within the Q monad, which has a runQ which can be used to evaluate its context. These functions of this monad is deeply embedded in the implementation of GHC.

runQ :: Quasi m => Q a -> m a
runIO :: IO a -> Q a

Just as before, TemplateHaskell provides the ability to lift Haskell values into the their AST quantities within the quoted expression using the Lift type class.

class Lift t where
  lift :: t -> Q Exp

instance Lift Integer where
  lift x = return (LitE (IntegerL x))

instance Lift Int where
  lift x= return (LitE (IntegerL (fromIntegral x)))

instance Lift Char where
  lift x = return (LitE (CharL x))

instance Lift Bool where
  lift True  = return (ConE trueName)
  lift False = return (ConE falseName)

instance Lift a => Lift (Maybe a) where
  lift Nothing  = return (ConE nothingName)
  lift (Just x) = liftM (ConE justName `AppE`) (lift x)

instance Lift a => Lift [a] where
  lift xs = do { xs' <- mapM lift xs; return (ListE xs') }

In many cases Template Haskell can be used interactively to explore the AST form of various Haskell syntax.

λ: runQ [e| \x -> x |]
LamE [VarP x_2] (VarE x_2)

λ: runQ [d| data Nat = Z | S Nat |]
[DataD [] Nat_0 [] [NormalC Z_2 [],NormalC S_1 [(NotStrict,ConT Nat_0)]] []]

λ: runQ [p| S (S Z)|]
ConP Singleton.S [ConP Singleton.S [ConP Singleton.Z []]]

λ: runQ [t| Int -> [Int] |]
AppT (AppT ArrowT (ConT GHC.Types.Int)) (AppT ListT (ConT GHC.Types.Int))

λ: let g = $(runQ [| \x -> x |])

λ: g 3
3

Using Language.Haskell.TH we can piece together Haskell AST element by element but subject to our own custom logic to generate the code. This can be somewhat painful though as the source-language (called HsSyn) to Haskell is enormous, consisting of around 100 nodes in its AST many of which are dependent on the state of language pragmas.

-- builds the function (f = \(a,b) -> a)
f :: Q [Dec]
f = do
  let f = mkName "f"
  a <- newName "a"
  b <- newName "b"
  return [ FunD f [ Clause [TupP [VarP a, VarP b]] (NormalB (VarE a)) [] ] ]
my_id :: a -> a
my_id x = $( [| x |] )

main = print (my_id "Hello Haskell!")

As a debugging tool it is useful to be able to dump the reified information out for a given symbol interactively, to do so there is a simple little hack.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Language.Haskell.TH
import Text.Show.Pretty (ppShow)

introspect :: Name -> Q Exp
introspect n = do
  t <- reify n
  runIO $ putStrLn $ ppShow t
  [|return ()|]
λ: $(introspect 'id)
VarI
  GHC.Base.id
  (ForallT
     [ PlainTV a_1627405383 ]
     []
     (AppT (AppT ArrowT (VarT a_1627405383)) (VarT a_1627405383)))
  Nothing
  (Fixity 9 InfixL)


λ: $(introspect ''Maybe)
TyConI
  (DataD
     []
     Data.Maybe.Maybe
     [ PlainTV a_1627399528 ]
     [ NormalC Data.Maybe.Nothing []
     , NormalC Data.Maybe.Just [ ( NotStrict , VarT a_1627399528 ) ]
     ]
     [])
import Language.Haskell.TH

foo :: Int -> Int
foo x = x + 1

data Bar

fooInfo :: InfoQ
fooInfo = reify 'foo

barInfo :: InfoQ
barInfo = reify ''Bar
$( [d| data T = T1 | T2 |] )

main = print [T1, T2]

Splices are indicated by $(f) syntax for the expression level and at the toplevel simply by invocation of the template Haskell function. Running GHC with -ddump-splices shows our code being spliced in at the specific location in the AST at compile-time.

$(f)

template_haskell_show.hs:1:1: Splicing declarations
    f
  ======>
    template_haskell_show.hs:8:3-10
    f (a_a5bd, b_a5be) = a_a5bd
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

module Splice where

import Language.Haskell.TH
import Language.Haskell.TH.Syntax

spliceF :: Q [Dec]
spliceF = do
  let f = mkName "f"
  a <- newName "a"
  b <- newName "b"
  return [ FunD f [ Clause [VarP a, VarP b] (NormalB (VarE a)) [] ] ]

spliceG :: Lift a => a -> Q [Dec]
spliceG n = runQ [d| g a = n |]
{-# LANGUAGE TemplateHaskell #-}

import Splice

spliceF
spliceG "argument"

main = do
  print $ f 1 2
  print $ g ()

At the point of the splice all variables and types used must be in scope, so it must appear after their declarations in the module. As a result we often have to mentally topologically sort our code when using TemplateHaskell such that declarations are defined in order.

See: Template Haskell AST

Antiquotation

Extending our quasiquotation from above now that we have TemplateHaskell machinery we can implement the same class of logic that it uses to pass Haskell values in and pull Haskell values out via pattern matching on templated expressions.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE DeriveDataTypeable #-}

module Antiquote where

import Data.Generics
import Language.Haskell.TH
import Language.Haskell.TH.Quote

import Text.Parsec
import Text.Parsec.String (Parser)
import Text.Parsec.Language (emptyDef)

import qualified Text.Parsec.Expr as Ex
import qualified Text.Parsec.Token as Tok

data Expr
  = Tr
  | Fl
  | Zero
  | Succ Expr
  | Pred Expr
  | Antiquote String
  deriving (Eq, Show, Data, Typeable)

lexer :: Tok.TokenParser ()
lexer = Tok.makeTokenParser emptyDef

parens :: Parser a -> Parser a
parens = Tok.parens lexer

reserved :: String -> Parser ()
reserved = Tok.reserved lexer

identifier :: Parser String
identifier = Tok.identifier lexer

semiSep :: Parser a -> Parser [a]
semiSep = Tok.semiSep lexer

reservedOp :: String -> Parser ()
reservedOp = Tok.reservedOp lexer

oper s f assoc = Ex.Prefix (reservedOp s >> return f)

table = [ oper "succ" Succ Ex.AssocLeft
        , oper "pred" Pred Ex.AssocLeft
        ]

expr :: Parser Expr
expr = Ex.buildExpressionParser [table] factor

true, false, zero :: Parser Expr
true  = reserved "true" >> return Tr
false = reserved "false" >> return Fl
zero  = reservedOp "0" >> return Zero

antiquote :: Parser Expr
antiquote = do
  char '$'
  var <- identifier
  return $ Antiquote var

factor :: Parser Expr
factor = true
      <|> false
      <|> zero
      <|> antiquote
      <|> parens expr

contents :: Parser a -> Parser a
contents p = do
  Tok.whiteSpace lexer
  r <- p
  eof
  return r

parseExpr :: String -> Either ParseError Expr
parseExpr s = parse (contents expr) "<stdin>" s


class Expressible a where
  express :: a -> Expr

instance Expressible Expr where
  express = id

instance Expressible Bool where
  express True = Tr
  express False = Fl

instance Expressible Integer where
  express 0 = Zero
  express n = Succ (express (n - 1))


exprE :: String -> Q Exp
exprE s = do
  filename <- loc_filename `fmap` location
  case parse (contents expr) filename s of
    Left err -> error (show err)
    Right exp -> dataToExpQ (const Nothing `extQ` antiExpr) exp

exprP :: String -> Q Pat
exprP s = do
  filename <- loc_filename `fmap` location
  case parse (contents expr) filename s of
    Left err -> error (show err)
    Right exp -> dataToPatQ (const Nothing `extQ` antiExprPat) exp

-- antiquote RHS
antiExpr :: Expr -> Maybe (Q Exp)
antiExpr (Antiquote v) = Just embed
  where embed = [| express $(varE (mkName v)) |]
antiExpr _ = Nothing

-- antiquote LHS
antiExprPat :: Expr -> Maybe (Q Pat)
antiExprPat (Antiquote v) = Just $ varP (mkName v)
antiExprPat _ = Nothing

mini :: QuasiQuoter
mini = QuasiQuoter exprE exprP undefined undefined
{-# LANGUAGE QuasiQuotes #-}

import Antiquote

-- extract
a :: Expr -> Expr
a [mini|succ $x|] = x

b :: Expr -> Expr
b [mini|succ $x|] = [mini|pred $x|]

c :: Expressible a => a -> Expr
c x = [mini|succ $x|]

d :: Expr
d = c (8 :: Integer)
-- Succ (Succ (Succ (Succ (Succ (Succ (Succ (Succ Zero)))))))

e :: Expr
e = c True
-- Succ Tr

Templated Type Families

Just like at the value-level we can construct type-level constructions by piecing together their AST.

Type          AST
----------    ----------
t1 -> t2      ArrowT `AppT` t2 `AppT` t2
[t]           ListT `AppT` t
(t1,t2)       TupleT 2 `AppT` t1 `AppT` t2

For example consider that type-level arithmetic is still somewhat incomplete in GHC 7.6, but there often cases where the span of typelevel numbers is not full set of integers but is instead some bounded set of numbers. We can instead define operations with a type-family instead of using an inductive definition ( which often requires manual proofs ) and simply enumerates the entire domain of arguments to the type-family and maps them to some result computed at compile-time.

For example the modulus operator would be non-trivial to implement at type-level but instead we can use the enumFamily function to splice in type-family which simply enumerates all possible pairs of numbers up to a desired depth.

module EnumFamily where
import Language.Haskell.TH

enumFamily :: (Integer -> Integer -> Integer)
           -> Name
           -> Integer
           -> Q [Dec]
enumFamily f bop upper = return decls
  where
    decls = do
      i <- [1..upper]
      j <- [2..upper]
      return $ TySynInstD bop (rhs i j)

    rhs i j = TySynEqn
      [LitT (NumTyLit i), LitT (NumTyLit j)]
      (LitT (NumTyLit (i `f` j)))
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}

import Data.Proxy
import EnumFamily
import GHC.TypeLits hiding (Mod)

type family Mod (m :: Nat) (n :: Nat) :: Nat

type family Add (m :: Nat) (n :: Nat) :: Nat

type family Pow (m :: Nat) (n :: Nat) :: Nat

enumFamily mod ''Mod 10

enumFamily (+) ''Add 10

enumFamily (^) ''Pow 10

a :: Integer
a = natVal (Proxy :: Proxy (Mod 6 4))

-- 2

b :: Integer
b = natVal (Proxy :: Proxy (Pow 3 (Mod 6 4)))
-- 9

--    enumFamily mod ''Mod 3
--  ======>
--    template_typelevel_splice.hs:7:1-14
--    type instance Mod 2 1 = 0
--    type instance Mod 2 2 = 0
--    type instance Mod 2 3 = 2
--    type instance Mod 3 1 = 0
--    type instance Mod 3 2 = 1
--    type instance Mod 3 3 = 0
--    ...

In practice GHC seems fine with enormous type-family declarations although compile-time may increase a bit as a result.

The singletons library also provides a way to automate this process by letting us write seemingly value-level declarations inside of a quasiquoter and then promoting the logic to the type-level. For example if we wanted to write a value-level and type-level map function for our HList this would normally involve quite a bit of boilerplate, now it can stated very concisely.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE UndecidableInstances #-}

import Data.Singletons
import Data.Singletons.TH

$( promote
     [d|
       map :: (a -> b) -> [a] -> [b]
       map _ [] = []
       map f (x : xs) = f x : map f xs
       |]
 )

infixr 5 :::

data HList (ts :: [*]) where
  Nil :: HList '[]
  (:::) :: t -> HList ts -> HList (t ': ts)

-- TypeLevel
-- MapJust :: [*] -> [Maybe *]
type MapJust xs = Map Maybe xs

-- Value Level
-- mapJust :: [a] -> [Maybe a]
mapJust :: HList xs -> HList (MapJust xs)
mapJust Nil = Nil
mapJust (x ::: xs) = Just x ::: mapJust xs

type A = [Bool, String, Double, ()]

a :: HList A
a = True ::: "foo" ::: 3.14 ::: () ::: Nil

example1 :: HList (MapJust A)
example1 = mapJust a

-- example1 reduces to example2 when expanded
example2 :: HList [Maybe Bool, Maybe String, Maybe Double, Maybe ()]
example2 = Just True ::: Just "foo" ::: Just 3.14 ::: Just () ::: Nil

Templated Type Classes

Probably the most common use of Template Haskell is the automatic generation of type-class instances. Consider if we wanted to write a simple Pretty printing class for a flat data structure that derived the ppr method in terms of the names of the constructors in the AST we could write a simple instance.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}

module Class where

import Language.Haskell.TH

class Pretty a where
  ppr :: a -> String

normalCons :: Con -> Name
normalCons (NormalC n _) = n

getCons :: Info -> [Name]
getCons cons = case cons of
    TyConI (DataD    _ _ _ tcons _) -> map normalCons tcons
    con -> error $ "Can't derive for:" ++ (show con)

pretty :: Name -> Q [Dec]
pretty dt = do
  info <- reify dt
  Just cls <- lookupTypeName "Pretty"
  let datatypeStr = nameBase dt
  let cons = getCons info
  let dtype = mkName (datatypeStr)
  let mkInstance xs =
        InstanceD
        []                              -- Context
        (AppT
          (ConT cls)                    -- Instance
          (ConT dtype))                 -- Head
        [(FunD (mkName "ppr") xs)]      -- Methods
  let methods = map cases cons
  return $ [mkInstance methods]

-- Pattern matches on the ``ppr`` method
cases :: Name -> Clause
cases a = Clause [ConP a []] (NormalB (LitE (StringL (nameBase a)))) []

In a separate file invoke the pretty instance at the toplevel, and with --ddump-splice if we want to view the spliced class instance.

{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}

import Class

data PlatonicSolid
  = Tetrahedron
  | Cube
  | Octahedron
  | Dodecahedron
  | Icosahedron

pretty ''PlatonicSolid

main :: IO ()
main = do
  putStrLn (ppr Octahedron)
  putStrLn (ppr Dodecahedron)

Multiline Strings

Haskell has no language support for multiline string literals, although we can emulate this by using a quasiquoter. The resulting String literal is then converted using toString into whatever result type is desired.

{-# LANGUAGE TemplateHaskell #-}

module Multiline (s) where

import Data.String
import Language.Haskell.TH.Quote

s :: QuasiQuoter
s = QuasiQuoter
  { quoteExp  = (\a -> [|fromString a|]) . trim
  , quotePat  = \_ -> fail "illegal raw string QuasiQuote"
  , quoteType = \_ -> fail "illegal raw string QuasiQuote"
  , quoteDec  = \_ -> fail "illegal raw string QuasiQuote"
  }

trim :: String -> String
trim ('\n':xs) = xs
trim xs = xs

In a separate module we can then enable Quasiquotes and embed the string.

{-# LANGUAGE QuasiQuotes #-}

import Multiline (s)
import qualified Data.Text as T

foo :: T.Text
foo = [s|
This
is
my
multiline
string
|]

Path Files

Oftentimes it is necessary to embed the specific Git version hash of a build inside the executable. Using git-embed the compiler will effectively shell out to the command line to retrieve the version information of the CWD Git repository and use Template Haskell to define embed this information at compile-time. This is often useful for embedding in --version information in the command line interface to your program or service.

This example also makes use of the Cabal Paths_pkgname module during compile time which contains which contains several functions for querying target paths and included data files for the Cabal project. This can be included in the exposed-modules of a package to be accessed directly by the project, otherwise it is placed automatically in other-modules.

version :: Version
getBinDir :: IO FilePath 
getLibDir :: IO FilePath 
getDataDir :: IO FilePath
getLibexecDir :: IO FilePath
getSysconfDir :: IO FilePath
getDataFileName :: FilePath -> IO FilePath

An example of usage to query the Git metadata into the compiled binary of a project using the git-embed package:

{-# LANGUAGE TemplateHaskell #-}

import Git.Embed
import Data.Version
import Paths_myprog

gitRev :: String
gitRev = $(embedGitShortRevision)

gitBranch :: String
gitBranch = $(embedGitBranch)

ver :: String
ver = showVersion Paths_myprog.version

Categories

Do I need to Learn Category Theory?

Short answer: No. Most of the ideas of category theory aren’t really applicable to writing Haskell.

The long answer: It is not strictly necessary to learn, but so few things in life are. Learning new topics and ways of thinking about problems only enrich your thinking and give you new ways of thinking about code and abstractions. Category theory is never going to help you write a web application better, but it may give you insights into problems that are algebraic in nature. A tiny group of Haskellers espouse philosophies about it being an inspiration for certain abstractions, but most do not.

Some understanding of abstract algebra, and conventions for discussing algebraic structures and equational reasoning with laws are essential to modern Haskell and we will discuss these leading up to some basic category theory.

Abstract Algebra

Algebraic theory taught at higher levels generalises notions of arithmetic to operate over more generic structures than simple numbers. These structures are called sets and are a very broad notion of generic ways of describing groups of mathematical objects that can be equated and grouped. Over these sets we can define ways of combining and operating over elements of the set. These generalised notions of arithmetic are described in terms of and operations. Operations which take elements of a set to the same set are said to be closed in the set. When discussing operations we use the conventions:

Binary operations are generalisations of operations like multiplication and addition. That map two elements of a set to another element of a set. Unary operations map an element of a set to a single element of a set. Ternary operations map three elements. Higher-level operations are usually not given specific names.

Constants are specific elements of the set, that generalise values like 0 and 1 which have specific laws in relation to the operations defined over the set.

Certain properties show up so frequently we typically refer to their properties by an algebraic term. These terms are drawn from an equivalent abstract algebra concept. Several of the common algebraic laws are defined in the table below.

Associativity

Equations:

a × (b×c) = (a×b) × c

Haskell:

a `op` (b `op` c) = (a `op` b) `op` c

Haskell Predicate:

associative :: Eq a => (a -> a -> a) -> a -> a -> a -> Bool
associative op x y z  =  (x `op` y) `op` z == x `op` (y `op` z)

Commutativity

Equations:

a × b = b × a

Haskell:

a `op` b = b `op` a

Haskell Predicates:

commutative :: Eq a => (b -> b -> a) -> b -> b -> Bool
commutative op x y  =  x `op` y == y `op` x

Units

Equations:

a × e = a

e × a = a

Haskell:

a `op` e = a
e `op` a = a

Haskell Predicates:

leftIdentity :: Eq a => (b -> a -> a) -> b -> a -> Bool
leftIdentity op y x  =  y `op` x == x

rightIdentity :: Eq a => (a -> b -> a) -> b -> a -> Bool
rightIdentity op y x  =  x `op` y == x

identity :: Eq a => (a -> a -> a) -> a -> a -> Bool
identity op x y  =  leftIdentity op x y &&  rightIdentity op x y

Inversion

Equations:

a−1 × a = e

a × a−1 = e

Haskell:

(inv a) `op` a = e
a `op` (inv a) = e

Haskell Predicates:

leftInverse :: Eq a => (b -> b -> a) -> (b -> b) -> a -> b -> Bool
leftInverse op inv y x  =  inv x `op` x == y

rightInverse :: Eq a => (b -> b -> a) -> (b -> b) -> a -> b -> Bool
rightInverse op inv y x  =  x `op` inv x == y

inverse :: Eq a => (b -> b -> a) -> (b -> b) -> a -> b -> Bool
inverse op inv y x  =  leftInverse op inv y x && rightInverse op inv y x

Zeros

Equations:

a × 0 = 0

0 × a = 0

Haskell

a `op` e = e
e `op` a = e

Haskell Predicates:

leftZero :: Eq a => (a -> a -> a) -> a -> a -> Bool
leftZero  =  flip . rightIdentity

rightZero :: Eq a => (a -> a -> a) -> a -> a -> Bool
rightZero  =  flip . leftIdentity

zero :: Eq a => (a -> a -> a) -> a -> a -> Bool
zero op x y  =  leftZero op x y  &&  rightZero op x y

Linearity

Equations:

f(x+y) = f(x) + f(y)

Haskell:

f (x `op` y) = f x `op` f y

Haskell Predicates:

linear :: Eq a => (a -> a) -> (a -> a -> a) -> a -> a -> Bool
linear f (#) x y = f (x # y) == ((f x) # (f y))

Idempotency

Equations:

f(f(x)) = f(x)

f (f x) = f x

Haskell Predicates:

idempotent :: Eq a => (a -> a) -> a -> Bool
idempotent f x = f (f x)

Distributivity

Equations:

a × (b+c) = (a×b) + (a×c)

(b+c) × a = (b×a) + (c×a)

Haskell:

a `f` (b `g` c) = (a `f` b) `g` (a `f` c)
(b `g` c) `f` a = (b `f` a) `g` (c `f` a)

Haskell Predicates:

leftDistributive :: Eq a => (a -> b -> a) -> (a -> a -> a) -> b -> a -> a -> Bool
leftDistributive ( # ) op x y z  =  (y `op` z) # x == (y # x) `op` (z # x)

rightDistributive :: Eq a => (b -> a -> a) -> (a -> a -> a) -> b -> a -> a -> Bool
rightDistributive ( # ) op x y z  =  x # (y `op` z) == (x # y) `op` (x # z)

distributivity :: Eq a => (a -> a -> a) -> (a -> a -> a) -> a -> a -> a -> Bool
distributivity op op' x y z = op (op' x y) z == op' (op x z) (op y z)
                           && op x (op' y z) == op' (op x y) (op x z)

Anticommutativity

Equations:

a × b = (b×a)−1

Haskell:

a `op` b = inv (b `op` a)

Haskell Predicates:

anticommutative :: Eq a => (a -> a) -> (a -> a -> a) -> a -> a -> Bool
anticommutative inv op x y  =  x `op` y == inv (y `op` x)

Homomorphisms

Equations:

f(x×y) = f(x) + f(y)

Haskell:

f (a `op0` b) = (f a) `op1` (f b)

Haskell Predicates:

homomorphism :: Eq a =>
   (b -> a) -> (b -> b -> b) -> (a -> a -> a) -> b -> b -> Bool
homomorphism f op0 op1 x y  =  f (x `op0` y) == f x `op1` f y

Combinations of these properties over multiple functions gives rise to higher order systems of relations that occur over and over again throughout functional programming, and once we recognize them we can abstract over them. For instance a monoid is a combination of a unit and a single associative operation over a set of values.

You will often see this notation in tuple form. Where a set S (called the carrier) will be enriched with a variety of operations and elements that are closed over that set. For example a semigroup is a set equipped with an associative closed binary operation. If you add an identity element e to the semigroup you get a monoid.

Structure Notation
Semigroup (S,•)
Monoid (S,•,e)
Monad (S,μ,η)

Categories

The most basic structure is a category which is an algebraic structure of objects (Obj) and morphisms (Hom) with the structure that morphisms compose associatively and the existence of an identity morphism for each object. A category is defined entirely in terms of its:

A morphism f written as f : x → y an abstraction on the algebraic notion of homomorphisms. It is an arrow between two objects in a category x and y called the domain and codomain respectively. The set of all morphisms between two given elements x and y is called the hom-set and written Hom(x,y).

In Haskell, with kind polymorphism enabled we can write down the general category parameterized by a type variable “c” for category. This is the instance Hask the category of Haskell types with functions between types as morphisms.

{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Prelude hiding ((.), id)

-- Morphisms
type (a ~> b) c = c a b

class Category (c :: k -> k -> *) where
  id :: (a ~> a) c
  (.) :: (y ~> z) c -> (x ~> y) c -> (x ~> z) c

type Hask = (->)

instance Category Hask where
  id x = x
  (f . g) x = f (g x)

Categories are interesting since they exhibit various composition properties and ways in which various elements in the category can be composed and rewritten while preserving several invariants about the program.

Some annoying curmudgeons will sometimes pit nicks about this not being a “real category” because all Haskell values are potentially inhabited by a bottom type which violates several rules of composition. This is mostly silly nit-picking and for the sake of discussion we’ll consider “ideal Haskell” which does not have this property.

Isomorphisms

Two objects of a category are said to be isomorphic if we can construct a morphism with 2-sided inverse that takes the structure of an object to another form and back to itself when inverted.

f  :: a -> b
f' :: b -> a

Such that:

f  . f' = id
f' . f  = id

For example the types Either () a and Maybe a are isomorphic.

{-# LANGUAGE ExplicitForAll #-}

data Iso a b = Iso { to :: a -> b, from :: b -> a }

f :: forall a. Maybe a -> Either () a
f (Just a) = Right a
f Nothing  = Left ()

f' :: forall a. Either () a -> Maybe a
f' (Left _)  = Nothing
f' (Right a) = Just a

iso :: Iso (Maybe a) (Either () a)
iso = Iso f f'

data V = V deriving Eq

ex1 = f  (f' (Right V)) == Right V
ex2 = f' (f  (Just V))  == Just V
data Iso a b = Iso { to :: a -> b, from :: b -> a }

instance Category Iso where
  id = Iso id id
  (Iso f f') . (Iso g g') = Iso (f . g) (g' . f')

Duality

One of the central ideas is the notion of duality, that reversing some internal structure yields a new structure with a “mirror” set of theorems. The dual of a category reverse the direction of the morphisms forming the category COp.

import Control.Category
import Prelude hiding ((.), id)

newtype Op a b = Op (b -> a)

instance Category Op where
  id = Op id
  (Op f) . (Op g) = Op (g . f)

See:

Functors

Functors are mappings between the objects and morphisms of categories that preserve identities and composition.

{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeSynonymInstances #-}

import Control.Category
import Prelude hiding (Functor, fmap, id)

class (Category c, Category d) => Functor c d t where
  fmap :: c a b -> d (t a) (t b)

type Hask = (->)

instance Functor Hask Hask [] where
  fmap f [] = []
  fmap f (x : xs) = f x : (fmap f xs)
fmap idid
fmap (a . b) ≡ (fmap a) . (fmap b)

Natural Transformations

Natural transformations are mappings between functors that are invariant under interchange of morphism composition order.

type Nat f g = forall a. f a -> g a

Such that for a natural transformation h we have:

fmap f . h ≡ h . fmap f

The simplest example is between (f = List) and (g = Maybe) types.

headMay :: forall a. [a] -> Maybe a
headMay []     = Nothing
headMay (x:xs) = Just x

Regardless of how we chase safeHead, we end up with the same result.

fmap f (headMay xs) ≡ headMay (fmap f xs)
fmap f (headMay [])
= fmap f Nothing
= Nothing

headMay (fmap f [])
= headMay []
= Nothing
fmap f (headMay (x:xs))
= fmap f (Just x)
= Just (f x)

headMay (fmap f (x:xs))
= headMay [f x]
= Just (f x)

Or consider the Functor (->).

f :: (Functor t)
  => (->) a b
  -> (->) (t a) (t b)
f = fmap

g :: (b -> c)
  -> (->) a b
  -> (->) a c
g = (.)

c :: (Functor t)
  => (b -> c)
  -> (->) (t a) (t b)
  -> (->) (t a) (t c)
c = f . g
f . g x = c x . g

A lot of the expressive power of Haskell types comes from the interesting fact that, with a few caveats, polymorphic Haskell functions are natural transformations.

See: You Could Have Defined Natural Transformations

Kleisli Category

Kleisli composition (i.e. Kleisli Fish) is defined to be:

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
f >=> g ≡ \x -> f x >>= g

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c
(<=<) = flip (>=>)

The monad laws stated in terms of the Kleisli category of a monad m are stated much more symmetrically as one associativity law and two identity laws.

(f >=> g) >=> h ≡ f >=> (g >=> h)
return >=> f ≡ f
f >=> return ≡  f

Stated simply that the monad laws above are just the category laws in the Kleisli category.

{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE ExplicitForAll #-}

import Control.Monad
import Control.Category
import Prelude hiding ((.))

-- Kleisli category
newtype Kleisli m a b = K (a -> m b)

-- Kleisli morphisms ( a -> m b )
type (a :~> b) m = Kleisli m a b

instance Monad m => Category (Kleisli m) where
  id            = K return
  (K f) . (K g) = K (f <=< g)


just :: (a :~> a) Maybe
just = K Just

left :: forall a b. (a :~> b) Maybe -> (a :~> b) Maybe
left f = just . f

right :: forall a b. (a :~> b) Maybe -> (a :~> b) Maybe
right f = f . just

For example, Just is just an identity morphism in the Kleisli category of the Maybe monad.

Just >=> f ≡ f
f >=> Just ≡ f

Monoidal Categories

On top of the basic category structure there are other higher-level objects that can be constructed that enrich the category with additional operations.

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FunctionalDependencies #-}

import Prelude hiding ((.))

class Category k where
  id :: k a a
  (.) :: k b c -> k a b -> k a c

class Category k => Bifunctor k p where
  bimap :: k a b -> k a' b' -> k (p a a') (p b b')

class Bifunctor k p => Associative k p where
  associate :: k (p (p a b) c) (p a (p b c))
  coassociate :: k (p a (p b c)) (p (p a b) c)

class Associative k p => Monoidal k p i | k p -> i where
  idl :: k (p i a) a
  idr :: k (p a i) a
  coidl :: k a (p i a)
  coidr :: k a (p a i)

class Braided k p where
  braid :: k (p a b) (p b a)

class (Monoidal k prod i, Braided k prod) => Cartesian k prod i | k -> prod i where
  fst :: k (prod a b) a
  snd :: k (prod a b) b
  diag :: k a (prod a a)
  (&&&) :: k a b -> k a c -> k a (prod b c)
  f &&& g = (f `bimap` g) . diag

class Cartesian k p i => CCC k p i e | k -> p i e where
  apply :: k (p (e a b) a) b
  curry :: k (p a b) c -> k a (e b c)
  uncurry :: k a (e b c) -> k (p a b) c

An example of this tower is is the Hask with (->) as exponential, (,) as product and () as unit object.

type Hask = (->)

instance Category (->) where
  id = Prelude.id
  (.) = (Prelude..)
 
instance Bifunctor (->) (,) where
  bimap f g = \(a,b) -> (f a,g b)
 
instance Associative (->) (,) where
  associate ((a,b),c) = (a,(b,c))
  coassociate (a,(b,c)) = ((a,b),c)
 
instance Monoidal (->) (,) () where
  idl ((),a) = a
  idr (a,()) = a
  coidl a = ((),a)
  coidr a = (a,())
 
instance Braided (->) (,) where
  braid (a,b) = (b,a)
 
instance Cartesian (->) (,) () where
  fst = Prelude.fst
  snd = Prelude.snd
  diag x = (x,x)

instance CCC (->) (,) () (->) where
  apply (f,a) = f a
  curry = Prelude.curry
  uncurry = Prelude.uncurry

Further Resources

Category theory is an entire branch of mathematics that should be studeid independently of Haskell and programming. The classic text is “Category Theory” by Awodey. This text assumes a undergraduate level mathematics background.

For a programming perspective there are several lectures and functional programming oriented resources:


Source Code

All code is available from this Github repository. This code is dedicated to the public domain. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

https://github.com/sdiehl/wiwinwlh

Chapters: